Explore and analyze the continuous chlorophyll data to be included in the NDFS synthesis manuscript. We will attempt to fit multiple models to predict weekly average chlorophyll fluorescence values. All models will only include representative stations for 4 habitat types - upstream (RD22), lower Yolo Bypass (STTD), Cache Slough complex (LIB), and downstream (RVB). At a minimum, the models will contain the two categorical variables - Year and Station - as predictor variables. In some of the models, we will add weekly average flow as a continuous predictor which replaces the categorical predictor - flow action period - in the original analysis. Additionally, we’ll add a GAM smooth for Week number term to account for seasonality in some of the models. After fitting multiple models, we’ll use a model selection process to determine the best one.
# Load packages
library(tidyverse)
library(scales)
library(knitr)
library(mgcv)
library(car)
library(gratia)
library(ggeffects)
library(emmeans)
library(multcomp)
library(here)
library(conflicted)
# Source functions
source(here("manuscript_synthesis/src/global_functions.R"))
# Declare package conflict preferences
conflicts_prefer(dplyr::filter(), dplyr::lag(), dplyr::select())
Display current versions of R and packages used for this analysis:
devtools::session_info()
## ─ Session info ───────────────────────────────────────────────────────────────
## setting value
## version R version 4.4.1 (2024-06-14 ucrt)
## os Windows 11 x64 (build 26100)
## system x86_64, mingw32
## ui RTerm
## language (EN)
## collate English_United States.utf8
## ctype English_United States.utf8
## tz America/Los_Angeles
## date 2024-12-19
## pandoc 3.1.11 @ C:/Program Files/RStudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown)
##
## ─ Packages ───────────────────────────────────────────────────────────────────
## package * version date (UTC) lib source
## abind 1.4-5 2016-07-21 [1] CRAN (R 4.4.0)
## bslib 0.8.0 2024-07-29 [1] CRAN (R 4.4.1)
## cachem 1.1.0 2024-05-16 [1] CRAN (R 4.4.1)
## car * 3.1-2 2023-03-30 [1] CRAN (R 4.4.0)
## carData * 3.0-5 2022-01-06 [1] CRAN (R 4.4.0)
## cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.1)
## coda 0.19-4.1 2024-01-31 [1] CRAN (R 4.4.0)
## codetools 0.2-20 2024-03-31 [2] CRAN (R 4.4.1)
## colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.4.1)
## conflicted * 1.2.0 2023-02-01 [1] CRAN (R 4.4.0)
## devtools 2.4.5 2022-10-11 [1] CRAN (R 4.4.0)
## digest 0.6.37 2024-08-19 [1] CRAN (R 4.4.1)
## dplyr * 1.1.4 2023-11-17 [1] CRAN (R 4.4.0)
## ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.4.0)
## emmeans * 1.10.4 2024-08-21 [1] CRAN (R 4.4.1)
## estimability 1.5.1 2024-05-12 [1] CRAN (R 4.4.1)
## evaluate 0.24.0 2024-06-10 [1] CRAN (R 4.4.1)
## fansi 1.0.6 2023-12-08 [1] CRAN (R 4.4.0)
## farver 2.1.2 2024-05-13 [1] CRAN (R 4.4.1)
## fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.1)
## forcats * 1.0.0 2023-01-29 [1] CRAN (R 4.4.0)
## fs * 1.6.4 2024-04-25 [1] CRAN (R 4.4.0)
## generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0)
## ggeffects * 1.7.1 2024-09-01 [1] CRAN (R 4.4.1)
## ggokabeito 0.1.0 2021-10-18 [1] CRAN (R 4.4.0)
## ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.4.0)
## glue 1.7.0 2024-01-09 [1] CRAN (R 4.4.0)
## gratia * 0.9.2 2024-06-25 [1] CRAN (R 4.4.1)
## gtable 0.3.5 2024-04-22 [1] CRAN (R 4.4.0)
## here * 1.0.1 2020-12-13 [1] CRAN (R 4.4.0)
## hms 1.1.3 2023-03-21 [1] CRAN (R 4.4.0)
## htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.0)
## htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.4.0)
## httpuv 1.6.15 2024-03-26 [1] CRAN (R 4.4.0)
## insight 0.20.5 2024-10-02 [1] CRAN (R 4.4.2)
## jquerylib 0.1.4 2021-04-26 [1] CRAN (R 4.4.0)
## jsonlite 1.8.8 2023-12-04 [1] CRAN (R 4.4.0)
## knitr * 1.48 2024-07-07 [1] CRAN (R 4.4.1)
## later 1.3.2 2023-12-06 [1] CRAN (R 4.4.0)
## lattice 0.22-6 2024-03-20 [1] CRAN (R 4.4.0)
## lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.0)
## lubridate * 1.9.3 2023-09-27 [1] CRAN (R 4.4.0)
## magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.4.0)
## MASS * 7.3-61 2024-06-13 [1] CRAN (R 4.4.1)
## Matrix 1.7-0 2024-03-22 [1] CRAN (R 4.4.0)
## memoise 2.0.1 2021-11-26 [1] CRAN (R 4.4.0)
## mgcv * 1.9-1 2023-12-21 [1] CRAN (R 4.4.0)
## mime 0.12 2021-09-28 [1] CRAN (R 4.4.0)
## miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.4.0)
## multcomp * 1.4-26 2024-07-18 [1] CRAN (R 4.4.1)
## munsell 0.5.1 2024-04-01 [1] CRAN (R 4.4.0)
## mvnfast 0.2.8 2023-02-23 [1] CRAN (R 4.4.0)
## mvtnorm * 1.3-1 2024-09-03 [1] CRAN (R 4.4.1)
## nlme * 3.1-166 2024-08-14 [1] CRAN (R 4.4.1)
## patchwork * 1.3.0 2024-09-16 [1] CRAN (R 4.4.2)
## pillar 1.9.0 2023-03-22 [1] CRAN (R 4.4.0)
## pkgbuild 1.4.4 2024-03-17 [1] CRAN (R 4.4.0)
## pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.4.0)
## pkgload 1.4.0 2024-06-28 [1] CRAN (R 4.4.1)
## profvis 0.3.8 2023-05-02 [1] CRAN (R 4.4.0)
## promises 1.3.0 2024-04-05 [1] CRAN (R 4.4.0)
## purrr * 1.0.2 2023-08-10 [1] CRAN (R 4.4.0)
## R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.0)
## Rcpp 1.0.13 2024-07-17 [1] CRAN (R 4.4.1)
## readr * 2.1.5 2024-01-10 [1] CRAN (R 4.4.0)
## remotes 2.5.0 2024-03-17 [1] CRAN (R 4.4.0)
## rlang * 1.1.4 2024-06-04 [1] CRAN (R 4.4.1)
## rmarkdown 2.28 2024-08-17 [1] CRAN (R 4.4.1)
## rprojroot 2.0.4 2023-11-05 [1] CRAN (R 4.4.0)
## rstudioapi 0.16.0 2024-03-24 [1] CRAN (R 4.4.0)
## sandwich 3.1-0 2023-12-11 [1] CRAN (R 4.4.0)
## sass 0.4.9 2024-03-15 [1] CRAN (R 4.4.0)
## scales * 1.3.0 2023-11-28 [1] CRAN (R 4.4.0)
## sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.4.0)
## shiny 1.9.1 2024-08-01 [1] CRAN (R 4.4.1)
## stringi 1.8.4 2024-05-06 [1] CRAN (R 4.4.0)
## stringr * 1.5.1 2023-11-14 [1] CRAN (R 4.4.0)
## survival * 3.7-0 2024-06-05 [1] CRAN (R 4.4.1)
## TH.data * 1.1-2 2023-04-17 [1] CRAN (R 4.4.0)
## tibble * 3.2.1 2023-03-20 [1] CRAN (R 4.4.0)
## tidyr * 1.3.1 2024-01-24 [1] CRAN (R 4.4.0)
## tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.4.0)
## tidyverse * 2.0.0 2023-02-22 [1] CRAN (R 4.4.0)
## timechange 0.3.0 2024-01-18 [1] CRAN (R 4.4.0)
## tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.4.0)
## urlchecker 1.0.1 2021-11-30 [1] CRAN (R 4.4.0)
## usethis 3.0.0 2024-07-29 [1] CRAN (R 4.4.1)
## utf8 1.2.4 2023-10-22 [1] CRAN (R 4.4.0)
## vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.4.0)
## withr 3.0.1 2024-07-31 [1] CRAN (R 4.4.1)
## xfun 0.47 2024-08-17 [1] CRAN (R 4.4.1)
## xtable 1.8-4 2019-04-21 [1] CRAN (R 4.4.0)
## yaml 2.3.10 2024-07-26 [1] CRAN (R 4.4.1)
## zoo 1.8-12 2023-04-13 [1] CRAN (R 4.4.0)
##
## [1] C:/R/win-library/4.4
## [2] C:/Program Files/R/R-4.4.1/library
##
## ──────────────────────────────────────────────────────────────────────────────
# Define file path for processed data
fp_data <- here("manuscript_synthesis/data/processed")
# Import weekly average water quality data
df_wq <- readRDS(file.path(fp_data, "wq_week_avg_2013-2019.rds"))
# Import weekly average flow data
df_flow <- readRDS(file.path(fp_data, "flow_week_avg_2013-2019.rds"))
# Create a vector for the factor order of StationCode
sta_order <- c("RD22", "STTD", "LIB", "RVB")
# We will use LIS flow data as a proxy for STTD
df_flow_c <- df_flow %>% mutate(StationCode = if_else(StationCode == "LIS", "STTD", StationCode))
# Prepare chlorophyll and flow data for exploration and analysis
df_chla_c1 <- df_wq %>%
select(StationCode, Year, Week, Chla) %>%
drop_na(Chla) %>%
# Filter to only include representative stations for 4 habitat types - RD22, STTD, LIB, RVB
filter(StationCode %in% sta_order) %>%
# Join flow data to chlorophyll data
left_join(df_flow_c, by = join_by(StationCode, Year, Week)) %>%
# Remove all NA flow values
drop_na(Flow) %>%
mutate(
# Scale and log transform chlorophyll values
Chla_log = log(Chla * 1000),
# Apply factor order to StationCode
StationCode = factor(StationCode, levels = sta_order),
# Add a column for Year as a factor for the model
Year_fct = factor(Year)
) %>%
arrange(StationCode, Year, Week)
df_chla_c1 %>%
summarize(
min_week = min(Week),
max_week = max(Week),
num_samples = n(),
.by = c(StationCode, Year)
) %>%
arrange(StationCode, Year) %>%
kable()
StationCode | Year | min_week | max_week | num_samples |
---|---|---|---|---|
RD22 | 2014 | 39 | 45 | 7 |
RD22 | 2015 | 30 | 45 | 16 |
RD22 | 2016 | 25 | 38 | 14 |
RD22 | 2017 | 28 | 44 | 17 |
RD22 | 2018 | 28 | 45 | 18 |
RD22 | 2019 | 28 | 45 | 18 |
STTD | 2013 | 33 | 44 | 12 |
STTD | 2014 | 30 | 45 | 14 |
STTD | 2015 | 30 | 46 | 17 |
STTD | 2016 | 25 | 38 | 14 |
STTD | 2017 | 28 | 39 | 10 |
STTD | 2018 | 29 | 42 | 14 |
STTD | 2019 | 30 | 45 | 16 |
LIB | 2014 | 40 | 45 | 6 |
LIB | 2015 | 27 | 46 | 20 |
LIB | 2016 | 22 | 38 | 17 |
LIB | 2017 | 28 | 44 | 17 |
LIB | 2018 | 33 | 44 | 10 |
LIB | 2019 | 28 | 43 | 8 |
RVB | 2013 | 27 | 46 | 20 |
RVB | 2014 | 30 | 45 | 16 |
RVB | 2015 | 27 | 46 | 20 |
RVB | 2016 | 22 | 38 | 15 |
RVB | 2017 | 28 | 44 | 17 |
RVB | 2018 | 28 | 45 | 18 |
RVB | 2019 | 28 | 45 | 18 |
Looking at the sample counts and date ranges, we’ll only include years 2015-2019 for the analysis.
df_chla_c2 <- df_chla_c1 %>%
filter(Year %in% 2015:2019) %>%
mutate(Year_fct = fct_drop(Year_fct))
We’ll create another dataframe that has up to 2 lag variables for chlorophyll to be used in the models to help with serial autocorrelation.
df_chla_c2_lag <- df_chla_c2 %>%
# Fill in missing weeks for each StationCode-Year combination
group_by(StationCode, Year) %>%
# Create lag variables of scaled log transformed chlorophyll values
mutate(
lag1 = lag(Chla_log),
lag2 = lag(Chla_log, 2)
) %>%
ungroup()
Let’s explore the data with some plots. First, lets plot the data in scatter plots of chlorophyll and flow faceted by Station and grouping all years together.
df_chla_c2 %>%
ggplot(aes(x = Flow, y = Chla)) +
geom_point() +
geom_smooth(formula = "y ~ x") +
facet_wrap(vars(StationCode), scales = "free") +
theme_bw()
At first glance, I’m not sure how well flow is going to be able to predict chlorophyll concentrations. At the furthest upstream station - RD22 - chlorophyll appears to be highest at the lowest flows, but the variation is at its maximum at the lowest flows. There may be some dilution effect going on here at the higher flows. At STTD, there does seem to be a modest increase in chlorophyll concentrations at the mid-range flows. This pattern is even more obvious at LIB. There appears to be no effect of flow on chlorophyll at RVB, but the range of chlorophyll concentrations is narrow at this station (between 0 and 5).
Let’s break these scatterplots apart by year to see how these patterns vary annually.
df_chla_c2 %>%
ggplot(aes(x = Flow, y = Chla)) +
geom_point() +
geom_smooth(formula = "y ~ x") +
facet_wrap(
vars(StationCode, Year),
ncol = 5,
scales = "free",
labeller = labeller(.multi_line = FALSE)
) +
theme_bw()
The patterns appear to vary annually at each station, which may justify using a 3-way interaction.
First, we will attempt to fit a generalized additive model (GAM) to the data set to help account for seasonality in the data. We’ll try running a GAM using a three-way interaction between Year, Weekly Average Flow, and Station, and a cyclic penalized cubic regression spline smooth term for week number to account for seasonality (restricting the k-value to 5 to reduce overfitting). Initially, we’ll run the GAM without accounting for serial autocorrelation.
m_gam_flow3 <- gam(
Chla_log ~ Year_fct * Flow * StationCode + s(Week, bs = "cc", k = 5),
data = df_chla_c2,
method = "REML",
knots = list(week = c(0, 52))
)
Lets look at the model summary and diagnostics:
summary(m_gam_flow3)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow * StationCode + s(Week, bs = "cc",
## k = 5)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.776e+00 1.065e-01 91.828 < 2e-16 ***
## Year_fct2016 -8.399e-01 1.543e-01 -5.444 1.16e-07 ***
## Year_fct2017 -9.692e-01 2.377e-01 -4.078 5.97e-05 ***
## Year_fct2018 -4.060e-01 1.421e-01 -2.858 0.004600 **
## Year_fct2019 -1.337e-01 1.396e-01 -0.958 0.338960
## Flow -1.964e-03 4.744e-04 -4.140 4.63e-05 ***
## StationCodeSTTD -1.147e+00 1.339e-01 -8.568 8.07e-16 ***
## StationCodeLIB -2.358e+00 4.002e-01 -5.893 1.12e-08 ***
## StationCodeRVB -2.720e+00 5.987e-01 -4.543 8.37e-06 ***
## Year_fct2016:Flow 2.327e-03 7.570e-04 3.074 0.002324 **
## Year_fct2017:Flow 3.152e-02 1.225e-02 2.574 0.010594 *
## Year_fct2018:Flow 5.652e-04 6.522e-04 0.867 0.386873
## Year_fct2019:Flow -5.601e-05 5.740e-04 -0.098 0.922341
## Year_fct2016:StationCodeSTTD 1.225e+00 1.969e-01 6.220 1.87e-09 ***
## Year_fct2017:StationCodeSTTD 1.205e+00 3.243e-01 3.716 0.000246 ***
## Year_fct2018:StationCodeSTTD -2.392e-01 1.879e-01 -1.273 0.204262
## Year_fct2019:StationCodeSTTD -9.220e-01 1.848e-01 -4.990 1.08e-06 ***
## Year_fct2016:StationCodeLIB 2.302e+00 8.067e-01 2.853 0.004658 **
## Year_fct2017:StationCodeLIB 1.216e+00 5.196e-01 2.339 0.020037 *
## Year_fct2018:StationCodeLIB -2.069e+00 5.209e-01 -3.972 9.12e-05 ***
## Year_fct2019:StationCodeLIB -1.666e-01 5.159e-01 -0.323 0.746950
## Year_fct2016:StationCodeRVB 2.489e+00 8.278e-01 3.006 0.002895 **
## Year_fct2017:StationCodeRVB 1.520e+00 7.592e-01 2.002 0.046309 *
## Year_fct2018:StationCodeRVB 5.291e-01 6.760e-01 0.783 0.434481
## Year_fct2019:StationCodeRVB -6.025e-01 6.932e-01 -0.869 0.385527
## Flow:StationCodeSTTD 5.176e-03 7.181e-04 7.207 5.66e-12 ***
## Flow:StationCodeLIB 1.783e-03 5.383e-04 3.312 0.001051 **
## Flow:StationCodeRVB 2.103e-03 4.964e-04 4.237 3.10e-05 ***
## Year_fct2016:Flow:StationCodeSTTD -4.440e-03 1.097e-03 -4.048 6.73e-05 ***
## Year_fct2017:Flow:StationCodeSTTD -2.326e-02 1.366e-02 -1.703 0.089738 .
## Year_fct2018:Flow:StationCodeSTTD -9.688e-04 9.659e-04 -1.003 0.316769
## Year_fct2019:Flow:StationCodeSTTD -1.569e-03 8.547e-04 -1.836 0.067435 .
## Year_fct2016:Flow:StationCodeLIB -1.936e-03 9.423e-04 -2.055 0.040881 *
## Year_fct2017:Flow:StationCodeLIB -3.143e-02 1.225e-02 -2.566 0.010814 *
## Year_fct2018:Flow:StationCodeLIB -1.440e-03 8.404e-04 -1.713 0.087812 .
## Year_fct2019:Flow:StationCodeLIB 2.452e-04 7.403e-04 0.331 0.740800
## Year_fct2016:Flow:StationCodeRVB -2.582e-03 7.770e-04 -3.322 0.001015 **
## Year_fct2017:Flow:StationCodeRVB -3.168e-02 1.225e-02 -2.586 0.010237 *
## Year_fct2018:Flow:StationCodeRVB -6.853e-04 6.678e-04 -1.026 0.305729
## Year_fct2019:Flow:StationCodeRVB -1.390e-05 5.930e-04 -0.023 0.981311
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.722 3 18.56 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.898 Deviance explained = 91.1%
## -REML = 255 Scale est. = 0.10912 n = 314
appraise(m_gam_flow3)
shapiro.test(residuals(m_gam_flow3))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow3)
## W = 0.97687, p-value = 5.975e-05
k.check(m_gam_flow3)
## k' edf k-index p-value
## s(Week) 3 2.72227 0.9693372 0.265
draw(m_gam_flow3, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow3, pages = 1, all.terms = TRUE)
acf(residuals(m_gam_flow3))
Box.test(residuals(m_gam_flow3), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow3)
## X-squared = 105.31, df = 20, p-value = 1.398e-13
Besides the Shapiro-Wilk normality test showing that the residuals aren’t normal, the diagnostic plots look pretty good. However, the residuals are autocorrelated.
Now, we’ll try to deal with the residual autocorrelation. We’ll run a series of models adding 1 and 2 lag terms and compare how well they correct for autocorrelation.
m_gam_flow3_lag1 <- gam(
Chla_log ~ Year_fct * Flow * StationCode + s(Week, bs = "cc", k = 5) + lag1,
data = df_chla_c2_lag,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_flow3_lag1))
Box.test(residuals(m_gam_flow3_lag1), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow3_lag1)
## X-squared = 28.061, df = 20, p-value = 0.108
m_gam_flow3_lag2 <- gam(
Chla_log ~ Year_fct * Flow * StationCode + s(Week, bs = "cc", k = 5) + lag1 + lag2,
data = df_chla_c2_lag,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_flow3_lag2))
Box.test(residuals(m_gam_flow3_lag2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow3_lag2)
## X-squared = 15.686, df = 20, p-value = 0.7359
The model with 1 lag term already seems to address the serial autocorrelation. Let’s use AIC to see how they compare.
AIC(m_gam_flow3, m_gam_flow3_lag1, m_gam_flow3_lag2)
## df AIC
## m_gam_flow3 43.94624 237.4562
## m_gam_flow3_lag1 44.81188 158.7898
## m_gam_flow3_lag2 45.81545 154.3799
It looks like the lag2 model has the best fit according to the AIC values. Let’s take a closer look at that one.
summary(m_gam_flow3_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow * StationCode + s(Week, bs = "cc",
## k = 5) + lag1 + lag2
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.942e+00 5.626e-01 10.563 < 2e-16 ***
## Year_fct2016 -5.724e-01 1.590e-01 -3.599 0.000391 ***
## Year_fct2017 -6.505e-01 2.400e-01 -2.711 0.007223 **
## Year_fct2018 -2.955e-01 1.412e-01 -2.093 0.037481 *
## Year_fct2019 -7.407e-02 1.378e-01 -0.538 0.591405
## Flow -1.364e-03 4.548e-04 -2.999 0.003008 **
## StationCodeSTTD -6.939e-01 1.437e-01 -4.830 2.49e-06 ***
## StationCodeLIB -1.555e+00 3.969e-01 -3.918 0.000118 ***
## StationCodeRVB -1.970e+00 6.566e-01 -3.001 0.002988 **
## lag1 5.316e-01 6.573e-02 8.088 3.49e-14 ***
## lag2 -1.386e-01 6.071e-02 -2.282 0.023376 *
## Year_fct2016:Flow 1.446e-03 7.135e-04 2.027 0.043828 *
## Year_fct2017:Flow 2.220e-02 1.352e-02 1.642 0.101936
## Year_fct2018:Flow 5.982e-04 6.055e-04 0.988 0.324231
## Year_fct2019:Flow 1.557e-04 5.359e-04 0.291 0.771614
## Year_fct2016:StationCodeSTTD 8.113e-01 2.031e-01 3.995 8.73e-05 ***
## Year_fct2017:StationCodeSTTD 8.102e-01 3.275e-01 2.474 0.014073 *
## Year_fct2018:StationCodeSTTD -6.404e-02 1.869e-01 -0.343 0.732109
## Year_fct2019:StationCodeSTTD -5.797e-01 1.899e-01 -3.052 0.002538 **
## Year_fct2016:StationCodeLIB 2.058e+00 8.967e-01 2.295 0.022639 *
## Year_fct2017:StationCodeLIB 8.948e-01 4.964e-01 1.803 0.072770 .
## Year_fct2018:StationCodeLIB -8.208e-01 5.527e-01 -1.485 0.138923
## Year_fct2019:StationCodeLIB -4.930e-02 4.829e-01 -0.102 0.918769
## Year_fct2016:StationCodeRVB 1.952e+00 9.201e-01 2.121 0.034971 *
## Year_fct2017:StationCodeRVB 1.055e+00 7.978e-01 1.323 0.187191
## Year_fct2018:StationCodeRVB 6.910e-01 7.092e-01 0.974 0.330883
## Year_fct2019:StationCodeRVB -1.381e-01 7.264e-01 -0.190 0.849409
## Flow:StationCodeSTTD 3.192e-03 7.093e-04 4.499 1.08e-05 ***
## Flow:StationCodeLIB 1.191e-03 5.202e-04 2.289 0.022987 *
## Flow:StationCodeRVB 1.517e-03 4.813e-04 3.151 0.001842 **
## Year_fct2016:Flow:StationCodeSTTD -2.740e-03 1.034e-03 -2.649 0.008627 **
## Year_fct2017:Flow:StationCodeSTTD -1.654e-02 1.472e-02 -1.124 0.262253
## Year_fct2018:Flow:StationCodeSTTD -8.351e-04 9.053e-04 -0.923 0.357214
## Year_fct2019:Flow:StationCodeSTTD -9.759e-04 7.996e-04 -1.221 0.223506
## Year_fct2016:Flow:StationCodeLIB -7.654e-04 9.668e-04 -0.792 0.429389
## Year_fct2017:Flow:StationCodeLIB -2.206e-02 1.352e-02 -1.632 0.104110
## Year_fct2018:Flow:StationCodeLIB -4.712e-04 8.824e-04 -0.534 0.593834
## Year_fct2019:Flow:StationCodeLIB -5.711e-05 6.916e-04 -0.083 0.934265
## Year_fct2016:Flow:StationCodeRVB -1.681e-03 7.394e-04 -2.274 0.023898 *
## Year_fct2017:Flow:StationCodeRVB -2.235e-02 1.352e-02 -1.653 0.099754 .
## Year_fct2018:Flow:StationCodeRVB -7.416e-04 6.256e-04 -1.186 0.237042
## Year_fct2019:Flow:StationCodeRVB -2.587e-04 5.598e-04 -0.462 0.644462
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.461 3 7.763 1.33e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.918 Deviance explained = 93.1%
## -REML = 215.73 Scale est. = 0.087877 n = 274
appraise(m_gam_flow3_lag2)
shapiro.test(residuals(m_gam_flow3_lag2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow3_lag2)
## W = 0.96317, p-value = 1.857e-06
k.check(m_gam_flow3_lag2)
## k' edf k-index p-value
## s(Week) 3 2.460695 0.9467043 0.1725
draw(m_gam_flow3_lag2, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow3_lag2, pages = 1, all.terms = TRUE)
anova(m_gam_flow3_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow * StationCode + s(Week, bs = "cc",
## k = 5) + lag1 + lag2
##
## Parametric Terms:
## df F p-value
## Year_fct 4 4.954 0.000755
## Flow 1 8.993 0.003008
## StationCode 3 11.462 4.96e-07
## lag1 1 65.416 3.49e-14
## lag2 1 5.210 0.023376
## Year_fct:Flow 4 1.873 0.116090
## Year_fct:StationCode 12 4.300 3.77e-06
## Flow:StationCode 3 7.237 0.000116
## Year_fct:Flow:StationCode 12 1.241 0.256118
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.461 3.000 7.763 1.33e-05
The model diagnostics look pretty good. Note that the 3-way
interaction between Year, Station, and Flow isn’t significant. We’ll use
m_gam_flow3_lag2
in the model selection process.
rm(m_gam_flow3, m_gam_flow3_lag1)
Now we’ll try running a GAM using all two-way interactions between Year, Flow, and Station.
m_gam_flow2 <- gam(
Chla_log ~ (Year_fct + Flow + StationCode)^2 + s(Week, bs = "cc", k = 5),
data = df_chla_c2,
method = "REML",
knots = list(week = c(0, 52))
)
Lets look at the model summary and diagnostics:
summary(m_gam_flow2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ (Year_fct + Flow + StationCode)^2 + s(Week, bs = "cc",
## k = 5)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.711e+00 9.377e-02 103.564 < 2e-16 ***
## Year_fct2016 -5.547e-01 1.298e-01 -4.273 2.64e-05 ***
## Year_fct2017 -3.981e-01 1.251e-01 -3.183 0.001620 **
## Year_fct2018 -3.184e-01 1.205e-01 -2.641 0.008722 **
## Year_fct2019 -1.354e-01 1.206e-01 -1.123 0.262566
## Flow -1.452e-03 2.513e-04 -5.780 1.97e-08 ***
## StationCodeSTTD -1.041e+00 1.256e-01 -8.287 4.70e-15 ***
## StationCodeLIB -2.074e+00 3.037e-01 -6.831 5.13e-11 ***
## StationCodeRVB -2.597e+00 5.281e-01 -4.918 1.49e-06 ***
## Year_fct2016:Flow -2.286e-04 1.412e-04 -1.619 0.106640
## Year_fct2017:Flow -1.430e-04 1.304e-04 -1.096 0.274109
## Year_fct2018:Flow -1.149e-04 1.307e-04 -0.879 0.380090
## Year_fct2019:Flow -7.474e-05 1.310e-04 -0.571 0.568768
## Year_fct2016:StationCodeSTTD 8.459e-01 1.788e-01 4.732 3.52e-06 ***
## Year_fct2017:StationCodeSTTD 3.354e-01 1.870e-01 1.794 0.073912 .
## Year_fct2018:StationCodeSTTD -3.324e-01 1.738e-01 -1.913 0.056752 .
## Year_fct2019:StationCodeSTTD -1.007e+00 1.709e-01 -5.895 1.07e-08 ***
## Year_fct2016:StationCodeLIB 1.112e+00 2.863e-01 3.884 0.000128 ***
## Year_fct2017:StationCodeLIB 3.338e-01 2.693e-01 1.240 0.216084
## Year_fct2018:StationCodeLIB -1.770e+00 2.879e-01 -6.149 2.64e-09 ***
## Year_fct2019:StationCodeLIB -4.850e-01 2.927e-01 -1.657 0.098653 .
## Year_fct2016:StationCodeRVB 2.036e+00 7.646e-01 2.663 0.008182 **
## Year_fct2017:StationCodeRVB 8.638e-01 6.689e-01 1.291 0.197600
## Year_fct2018:StationCodeRVB 4.469e-01 6.078e-01 0.735 0.462836
## Year_fct2019:StationCodeRVB -5.091e-01 6.217e-01 -0.819 0.413560
## Flow:StationCodeSTTD 3.620e-03 3.234e-04 11.195 < 2e-16 ***
## Flow:StationCodeLIB 1.409e-03 2.834e-04 4.970 1.16e-06 ***
## Flow:StationCodeRVB 1.578e-03 2.342e-04 6.739 8.92e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.687 3 22.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.888 Deviance explained = 89.8%
## -REML = 200.62 Scale est. = 0.12004 n = 314
appraise(m_gam_flow2)
shapiro.test(residuals(m_gam_flow2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow2)
## W = 0.98376, p-value = 0.001287
k.check(m_gam_flow2)
## k' edf k-index p-value
## s(Week) 3 2.686871 0.9690676 0.2475
draw(m_gam_flow2, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow2, pages = 1, all.terms = TRUE)
acf(residuals(m_gam_flow2))
Box.test(residuals(m_gam_flow2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow2)
## X-squared = 144.04, df = 20, p-value < 2.2e-16
Besides the Shapiro-Wilk normality test showing that the residuals aren’t normal, the diagnostic plots look really good. However, the residuals are autocorrelated.
Now, we’ll try to deal with the residual autocorrelation. We’ll run a series of models adding 1 and 2 lag terms and compare how well they correct for autocorrelation.
m_gam_flow2_lag1 <- gam(
Chla_log ~ (Year_fct + Flow + StationCode)^2 + s(Week, bs = "cc", k = 5) + lag1,
data = df_chla_c2_lag,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_flow2_lag1))
Box.test(residuals(m_gam_flow2_lag1), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow2_lag1)
## X-squared = 30.611, df = 20, p-value = 0.06054
m_gam_flow2_lag2 <- gam(
Chla_log ~ (Year_fct + Flow + StationCode)^2 + s(Week, bs = "cc", k = 5) + lag1 + lag2,
data = df_chla_c2_lag,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_flow2_lag2))
Box.test(residuals(m_gam_flow2_lag2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow2_lag2)
## X-squared = 18.837, df = 20, p-value = 0.5324
The model with 1 lag term already seems to address the serial autocorrelation, but the lag2 model is even better. Let’s use AIC to see how they compare.
AIC(m_gam_flow2, m_gam_flow2_lag1, m_gam_flow2_lag2)
## df AIC
## m_gam_flow2 31.93061 256.9933
## m_gam_flow2_lag1 32.78679 153.1460
## m_gam_flow2_lag2 33.79579 148.0033
Again, it looks like the lag2 model has the best fit according to the AIC values. Let’s take a closer look at that one.
summary(m_gam_flow2_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ (Year_fct + Flow + StationCode)^2 + s(Week, bs = "cc",
## k = 5) + lag1 + lag2
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.338e+00 5.236e-01 10.194 < 2e-16 ***
## Year_fct2016 -3.493e-01 1.243e-01 -2.811 0.005349 **
## Year_fct2017 -2.403e-01 1.175e-01 -2.045 0.041952 *
## Year_fct2018 -1.804e-01 1.128e-01 -1.600 0.110883
## Year_fct2019 -3.798e-02 1.118e-01 -0.340 0.734386
## Flow -8.481e-04 2.374e-04 -3.573 0.000426 ***
## StationCodeSTTD -5.400e-01 1.261e-01 -4.281 2.69e-05 ***
## StationCodeLIB -1.093e+00 3.071e-01 -3.559 0.000448 ***
## StationCodeRVB -1.434e+00 5.446e-01 -2.634 0.008992 **
## lag1 5.876e-01 6.315e-02 9.305 < 2e-16 ***
## lag2 -1.389e-01 5.918e-02 -2.346 0.019763 *
## Year_fct2016:Flow -1.337e-04 1.446e-04 -0.924 0.356166
## Year_fct2017:Flow -6.283e-05 1.314e-04 -0.478 0.633076
## Year_fct2018:Flow -6.137e-05 1.311e-04 -0.468 0.640055
## Year_fct2019:Flow -2.909e-05 1.311e-04 -0.222 0.824550
## Year_fct2016:StationCodeSTTD 4.972e-01 1.701e-01 2.923 0.003798 **
## Year_fct2017:StationCodeSTTD 1.932e-01 1.764e-01 1.095 0.274447
## Year_fct2018:StationCodeSTTD -1.479e-01 1.610e-01 -0.919 0.359077
## Year_fct2019:StationCodeSTTD -6.087e-01 1.647e-01 -3.697 0.000270 ***
## Year_fct2016:StationCodeLIB 6.306e-01 2.856e-01 2.208 0.028198 *
## Year_fct2017:StationCodeLIB 1.881e-01 2.575e-01 0.730 0.465824
## Year_fct2018:StationCodeLIB -1.098e+00 2.886e-01 -3.804 0.000181 ***
## Year_fct2019:StationCodeLIB -3.000e-01 2.815e-01 -1.066 0.287667
## Year_fct2016:StationCodeRVB 1.217e+00 8.017e-01 1.519 0.130194
## Year_fct2017:StationCodeRVB 3.038e-01 6.574e-01 0.462 0.644412
## Year_fct2018:StationCodeRVB 2.598e-01 5.860e-01 0.443 0.657883
## Year_fct2019:StationCodeRVB -3.972e-01 5.960e-01 -0.666 0.505767
## Flow:StationCodeSTTD 2.007e-03 3.206e-04 6.262 1.72e-09 ***
## Flow:StationCodeLIB 8.623e-04 2.659e-04 3.242 0.001352 **
## Flow:StationCodeRVB 9.164e-04 2.177e-04 4.210 3.61e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.435 3 8.747 3.04e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.917 Deviance explained = 92.7%
## -REML = 149.4 Scale est. = 0.089063 n = 274
appraise(m_gam_flow2_lag2)
shapiro.test(residuals(m_gam_flow2_lag2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow2_lag2)
## W = 0.96772, p-value = 7.839e-06
k.check(m_gam_flow2_lag2)
## k' edf k-index p-value
## s(Week) 3 2.435016 0.9459394 0.1775
draw(m_gam_flow2_lag2, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow2_lag2, pages = 1, all.terms = TRUE)
anova(m_gam_flow2_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ (Year_fct + Flow + StationCode)^2 + s(Week, bs = "cc",
## k = 5) + lag1 + lag2
##
## Parametric Terms:
## df F p-value
## Year_fct 4 2.789 0.027126
## Flow 1 12.765 0.000426
## StationCode 3 10.800 1.10e-06
## lag1 1 86.583 < 2e-16
## lag2 1 5.506 0.019763
## Year_fct:Flow 4 0.551 0.698106
## Year_fct:StationCode 12 5.788 8.65e-09
## Flow:StationCode 3 13.123 5.74e-08
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.435 3.000 8.747 3.04e-06
The model diagnostics look pretty good. Note that the 2-way
interaction between Year and Flow isn’t significant. We’ll use
m_gam_flow2_lag2
in the model selection process.
rm(m_gam_flow2, m_gam_flow2_lag1)
Next we’ll try running a GAM using a two-way interaction between Year and Station but not including flow as a predictor.
m_gam_cat2 <- gam(
Chla_log ~ Year_fct * StationCode + s(Week, bs = "cc", k = 5),
data = df_chla_c2,
method = "REML",
knots = list(week = c(0, 52))
)
Lets look at the model summary and diagnostics:
summary(m_gam_cat2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * StationCode + s(Week, bs = "cc", k = 5)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.50498 0.10404 91.360 < 2e-16 ***
## Year_fct2016 -0.54029 0.15349 -3.520 0.000501 ***
## Year_fct2017 -0.21984 0.14466 -1.520 0.129675
## Year_fct2018 -0.29821 0.14264 -2.091 0.037427 *
## Year_fct2019 -0.14474 0.14264 -1.015 0.311065
## StationCodeSTTD -0.76699 0.14452 -5.307 2.21e-07 ***
## StationCodeLIB -1.79937 0.13941 -12.907 < 2e-16 ***
## StationCodeRVB -1.85932 0.13941 -13.337 < 2e-16 ***
## Year_fct2016:StationCodeSTTD 0.85363 0.21322 4.003 7.93e-05 ***
## Year_fct2017:StationCodeSTTD 0.03494 0.22023 0.159 0.874055
## Year_fct2018:StationCodeSTTD -0.32131 0.20713 -1.551 0.121925
## Year_fct2019:StationCodeSTTD -0.84627 0.20306 -4.168 4.06e-05 ***
## Year_fct2016:StationCodeLIB 1.41654 0.20470 6.920 2.87e-11 ***
## Year_fct2017:StationCodeLIB 0.26245 0.19919 1.318 0.188682
## Year_fct2018:StationCodeLIB -1.75609 0.21578 -8.138 1.17e-14 ***
## Year_fct2019:StationCodeLIB -0.46106 0.22475 -2.051 0.041121 *
## Year_fct2016:StationCodeRVB 0.63920 0.20807 3.072 0.002327 **
## Year_fct2017:StationCodeRVB -0.02780 0.19919 -0.140 0.889118
## Year_fct2018:StationCodeRVB -0.01988 0.19635 -0.101 0.919435
## Year_fct2019:StationCodeRVB -0.60985 0.19635 -3.106 0.002083 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.568 3 15.76 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.839 Deviance explained = 85%
## -REML = 189.6 Scale est. = 0.17204 n = 314
appraise(m_gam_cat2)
shapiro.test(residuals(m_gam_cat2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_cat2)
## W = 0.98769, p-value = 0.009076
k.check(m_gam_cat2)
## k' edf k-index p-value
## s(Week) 3 2.56794 0.9387348 0.12
draw(m_gam_cat2, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_cat2, pages = 1, all.terms = TRUE)
acf(residuals(m_gam_cat2))
Box.test(residuals(m_gam_cat2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_cat2)
## X-squared = 278.51, df = 20, p-value < 2.2e-16
Besides the Shapiro-Wilk normality test showing that the residuals aren’t normal, the diagnostic plots look really good. However, the residuals are autocorrelated.
Now, we’ll try to deal with the residual autocorrelation. We’ll run a series of models adding 1 and 2 lag terms and compare how well they correct for autocorrelation.
m_gam_cat2_lag1 <- gam(
Chla_log ~ Year_fct * StationCode + s(Week, bs = "cc", k = 5) + lag1,
data = df_chla_c2_lag,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_cat2_lag1))
Box.test(residuals(m_gam_cat2_lag1), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_cat2_lag1)
## X-squared = 26.832, df = 20, p-value = 0.1401
m_gam_cat2_lag2 <- gam(
Chla_log ~ Year_fct * StationCode + s(Week, bs = "cc", k = 5) + lag1 + lag2,
data = df_chla_c2_lag,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_cat2_lag2))
Box.test(residuals(m_gam_cat2_lag2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_cat2_lag2)
## X-squared = 15.258, df = 20, p-value = 0.7615
The model with 1 lag term already seems to address the serial autocorrelation, but the lag2 model is even better. Let’s use AIC to see how they compare.
AIC(m_gam_cat2, m_gam_cat2_lag1, m_gam_cat2_lag2)
## df AIC
## m_gam_cat2 23.86710 362.7642
## m_gam_cat2_lag1 24.59559 189.2854
## m_gam_cat2_lag2 25.62646 176.4000
Again, it looks like the lag2 model has the best fit according to the AIC values. Let’s take a closer look at that one.
summary(m_gam_cat2_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * StationCode + s(Week, bs = "cc", k = 5) +
## lag1 + lag2
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.968075 0.509024 7.795 1.73e-13 ***
## Year_fct2016 -0.264678 0.129335 -2.046 0.041759 *
## Year_fct2017 -0.094817 0.118855 -0.798 0.425768
## Year_fct2018 -0.120328 0.117920 -1.020 0.308514
## Year_fct2019 -0.020108 0.117202 -0.172 0.863919
## StationCodeSTTD -0.256423 0.124046 -2.067 0.039750 *
## StationCodeLIB -0.744025 0.146809 -5.068 7.83e-07 ***
## StationCodeRVB -0.768135 0.150118 -5.117 6.20e-07 ***
## lag1 0.757746 0.061040 12.414 < 2e-16 ***
## lag2 -0.178844 0.062076 -2.881 0.004308 **
## Year_fct2016:StationCodeSTTD 0.383395 0.179813 2.132 0.033967 *
## Year_fct2017:StationCodeSTTD -0.023914 0.183626 -0.130 0.896489
## Year_fct2018:StationCodeSTTD -0.111566 0.170698 -0.654 0.513979
## Year_fct2019:StationCodeSTTD -0.412364 0.171467 -2.405 0.016904 *
## Year_fct2016:StationCodeLIB 0.616167 0.183385 3.360 0.000902 ***
## Year_fct2017:StationCodeLIB 0.103366 0.163030 0.634 0.526644
## Year_fct2018:StationCodeLIB -0.840384 0.200085 -4.200 3.71e-05 ***
## Year_fct2019:StationCodeLIB -0.212731 0.191415 -1.111 0.267482
## Year_fct2016:StationCodeRVB 0.272513 0.173941 1.567 0.118452
## Year_fct2017:StationCodeRVB -0.037916 0.162719 -0.233 0.815938
## Year_fct2018:StationCodeRVB 0.003196 0.160067 0.020 0.984088
## Year_fct2019:StationCodeRVB -0.286425 0.162510 -1.763 0.079207 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.214 3 5.061 0.000402 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.906 Deviance explained = 91.4%
## -REML = 101.27 Scale est. = 0.10141 n = 274
appraise(m_gam_cat2_lag2)
shapiro.test(residuals(m_gam_cat2_lag2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_cat2_lag2)
## W = 0.9529, p-value = 9.872e-08
k.check(m_gam_cat2_lag2)
## k' edf k-index p-value
## s(Week) 3 2.214206 0.9270206 0.135
draw(m_gam_cat2_lag2, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_cat2_lag2, pages = 1, all.terms = TRUE)
anova(m_gam_cat2_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * StationCode + s(Week, bs = "cc", k = 5) +
## lag1 + lag2
##
## Parametric Terms:
## df F p-value
## Year_fct 4 1.324 0.26146
## StationCode 3 10.923 9.14e-07
## lag1 1 154.104 < 2e-16
## lag2 1 8.300 0.00431
## Year_fct:StationCode 12 3.571 6.34e-05
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.214 3.000 5.061 0.000402
The model diagnostics look pretty good but not quite as good as with
the initial model. We’ll use m_gam_cat2_lag2
in the model
selection process.
rm(m_gam_cat2, m_gam_cat2_lag1)
Let’s try the weekly average model as a linear model with a three-way interaction between Year, Weekly Average Flow, and Station but without the smooth term for week number. Initially, we’ll run the model without accounting for serial autocorrelation.
m_lm_flow3 <- lm(Chla_log ~ Year_fct * Flow * StationCode, data = df_chla_c2)
Lets look at the model summary and diagnostics:
summary(m_lm_flow3)
##
## Call:
## lm(formula = Chla_log ~ Year_fct * Flow * StationCode, data = df_chla_c2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.98399 -0.20320 -0.01209 0.17753 1.31988
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.762e+00 1.160e-01 84.185 < 2e-16 ***
## Year_fct2016 -7.803e-01 1.678e-01 -4.651 5.13e-06 ***
## Year_fct2017 -1.275e+00 2.557e-01 -4.987 1.09e-06 ***
## Year_fct2018 -3.717e-01 1.557e-01 -2.387 0.017642 *
## Year_fct2019 -1.064e-01 1.529e-01 -0.696 0.486980
## Flow -2.168e-03 5.114e-04 -4.239 3.07e-05 ***
## StationCodeSTTD -1.148e+00 1.467e-01 -7.830 1.07e-13 ***
## StationCodeLIB -2.487e+00 4.255e-01 -5.846 1.43e-08 ***
## StationCodeRVB -3.270e+00 6.506e-01 -5.027 9.03e-07 ***
## Year_fct2016:Flow 2.807e-03 8.177e-04 3.432 0.000691 ***
## Year_fct2017:Flow 4.980e-02 1.296e-02 3.842 0.000152 ***
## Year_fct2018:Flow 4.445e-04 7.150e-04 0.622 0.534642
## Year_fct2019:Flow -7.480e-05 6.283e-04 -0.119 0.905318
## Year_fct2016:StationCodeSTTD 1.250e+00 2.156e-01 5.798 1.84e-08 ***
## Year_fct2017:StationCodeSTTD 1.716e+00 3.439e-01 4.989 1.08e-06 ***
## Year_fct2018:StationCodeSTTD -2.869e-01 2.057e-01 -1.395 0.164109
## Year_fct2019:StationCodeSTTD -9.572e-01 2.025e-01 -4.726 3.67e-06 ***
## Year_fct2016:StationCodeLIB 2.235e+00 8.545e-01 2.615 0.009414 **
## Year_fct2017:StationCodeLIB 1.584e+00 5.556e-01 2.850 0.004698 **
## Year_fct2018:StationCodeLIB -2.048e+00 5.678e-01 -3.606 0.000369 ***
## Year_fct2019:StationCodeLIB -2.341e-01 5.550e-01 -0.422 0.673534
## Year_fct2016:StationCodeRVB 3.488e+00 8.735e-01 3.993 8.39e-05 ***
## Year_fct2017:StationCodeRVB 2.697e+00 8.098e-01 3.330 0.000986 ***
## Year_fct2018:StationCodeRVB 9.703e-01 7.291e-01 1.331 0.184338
## Year_fct2019:StationCodeRVB 2.551e-02 7.444e-01 0.034 0.972687
## Flow:StationCodeSTTD 4.930e-03 7.866e-04 6.267 1.42e-09 ***
## Flow:StationCodeLIB 1.893e-03 5.719e-04 3.309 0.001061 **
## Flow:StationCodeRVB 2.442e-03 5.331e-04 4.580 7.07e-06 ***
## Year_fct2016:Flow:StationCodeSTTD -4.311e-03 1.203e-03 -3.585 0.000399 ***
## Year_fct2017:Flow:StationCodeSTTD -3.529e-02 1.471e-02 -2.399 0.017117 *
## Year_fct2018:Flow:StationCodeSTTD -7.185e-04 1.057e-03 -0.680 0.497159
## Year_fct2019:Flow:StationCodeSTTD -1.288e-03 9.364e-04 -1.375 0.170214
## Year_fct2016:Flow:StationCodeLIB -2.501e-03 9.998e-04 -2.502 0.012938 *
## Year_fct2017:Flow:StationCodeLIB -4.968e-02 1.297e-02 -3.830 0.000159 ***
## Year_fct2018:Flow:StationCodeLIB -1.229e-03 9.207e-04 -1.335 0.182876
## Year_fct2019:Flow:StationCodeLIB 8.259e-05 8.062e-04 0.102 0.918482
## Year_fct2016:Flow:StationCodeRVB -3.242e-03 8.342e-04 -3.887 0.000127 ***
## Year_fct2017:Flow:StationCodeRVB -5.013e-02 1.296e-02 -3.867 0.000138 ***
## Year_fct2018:Flow:StationCodeRVB -6.903e-04 7.317e-04 -0.943 0.346284
## Year_fct2019:Flow:StationCodeRVB -1.432e-04 6.474e-04 -0.221 0.825074
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3624 on 274 degrees of freedom
## Multiple R-squared: 0.8923, Adjusted R-squared: 0.877
## F-statistic: 58.23 on 39 and 274 DF, p-value: < 2.2e-16
df_chla_c2 %>% plot_lm_diag(Chla_log, m_lm_flow3)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
shapiro.test(residuals(m_lm_flow3))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_lm_flow3)
## W = 0.97352, p-value = 1.555e-05
acf(residuals(m_lm_flow3))
Box.test(residuals(m_lm_flow3), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_lm_flow3)
## X-squared = 137.15, df = 20, p-value < 2.2e-16
The residuals deviate from a normal distribution according to visual inspection and the Shapiro-Wilk normality test. Also, model definitely has residual autocorrelation as indicated by the ACF plot and the Box-Ljung test.
Now, we’ll try to deal with the residual autocorrelation and the non-normal residuals. We’ll run a series of linear models adding 1 and 2 lag terms and compare how well they correct for autocorrelation.
m_lm_flow3_lag1 <- df_chla_c2_lag %>%
drop_na(Chla_log, lag1) %>%
lm(Chla_log ~ Year_fct * Flow * StationCode + lag1, data = .)
acf(residuals(m_lm_flow3_lag1))
Box.test(residuals(m_lm_flow3_lag1), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_lm_flow3_lag1)
## X-squared = 26.352, df = 20, p-value = 0.1545
m_lm_flow3_lag2 <- df_chla_c2_lag %>%
drop_na(Chla_log, lag1, lag2) %>%
lm(Chla_log ~ Year_fct * Flow * StationCode + lag1 + lag2, data = .)
acf(residuals(m_lm_flow3_lag2))
Box.test(residuals(m_lm_flow3_lag2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_lm_flow3_lag2)
## X-squared = 13.106, df = 20, p-value = 0.8728
The model with 1 lag term already has better ACF and Box-Ljung test results than the initial model. Let’s use AIC to see how they compare.
AIC(m_lm_flow3, m_lm_flow3_lag1, m_lm_flow3_lag2)
## df AIC
## m_lm_flow3 41 292.7994
## m_lm_flow3_lag1 42 183.8907
## m_lm_flow3_lag2 43 177.8827
Again, it looks like the lag2 model has the best fit according to the AIC values. Let’s take a closer look at that one.
summary(m_lm_flow3_lag2)
##
## Call:
## lm(formula = Chla_log ~ Year_fct * Flow * StationCode + lag1 +
## lag2, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.10604 -0.15916 -0.00246 0.11706 0.97717
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.151e+00 5.577e-01 9.236 < 2e-16 ***
## Year_fct2016 -4.942e-01 1.616e-01 -3.057 0.002495 **
## Year_fct2017 -7.132e-01 2.504e-01 -2.848 0.004796 **
## Year_fct2018 -2.494e-01 1.473e-01 -1.693 0.091852 .
## Year_fct2019 -5.465e-02 1.440e-01 -0.380 0.704640
## Flow -1.413e-03 4.645e-04 -3.043 0.002615 **
## StationCodeSTTD -6.074e-01 1.488e-01 -4.081 6.16e-05 ***
## StationCodeLIB -1.326e+00 4.060e-01 -3.266 0.001256 **
## StationCodeRVB -2.238e+00 6.850e-01 -3.268 0.001249 **
## lag1 6.009e-01 6.712e-02 8.954 < 2e-16 ***
## lag2 -1.262e-01 6.347e-02 -1.989 0.047871 *
## Year_fct2016:Flow 1.648e-03 7.277e-04 2.265 0.024448 *
## Year_fct2017:Flow 2.732e-02 1.386e-02 1.971 0.049931 *
## Year_fct2018:Flow 5.512e-04 6.344e-04 0.869 0.385818
## Year_fct2019:Flow 2.174e-04 5.600e-04 0.388 0.698236
## Year_fct2016:StationCodeSTTD 7.355e-01 2.116e-01 3.476 0.000607 ***
## Year_fct2017:StationCodeSTTD 9.581e-01 3.364e-01 2.848 0.004790 **
## Year_fct2018:StationCodeSTTD -9.220e-02 1.956e-01 -0.471 0.637855
## Year_fct2019:StationCodeSTTD -5.315e-01 1.989e-01 -2.672 0.008076 **
## Year_fct2016:StationCodeLIB 1.796e+00 9.278e-01 1.935 0.054173 .
## Year_fct2017:StationCodeLIB 8.549e-01 5.126e-01 1.668 0.096688 .
## Year_fct2018:StationCodeLIB -5.611e-01 5.719e-01 -0.981 0.327564
## Year_fct2019:StationCodeLIB -1.799e-01 4.976e-01 -0.362 0.718000
## Year_fct2016:StationCodeRVB 2.675e+00 9.350e-01 2.861 0.004608 **
## Year_fct2017:StationCodeRVB 1.758e+00 8.198e-01 2.144 0.033071 *
## Year_fct2018:StationCodeRVB 1.155e+00 7.307e-01 1.581 0.115196
## Year_fct2019:StationCodeRVB 4.856e-01 7.436e-01 0.653 0.514402
## Flow:StationCodeSTTD 2.734e-03 7.374e-04 3.707 0.000262 ***
## Flow:StationCodeLIB 1.279e-03 5.221e-04 2.450 0.015009 *
## Flow:StationCodeRVB 1.673e-03 4.912e-04 3.406 0.000778 ***
## Year_fct2016:Flow:StationCodeSTTD -2.337e-03 1.081e-03 -2.161 0.031691 *
## Year_fct2017:Flow:StationCodeSTTD -1.781e-02 1.525e-02 -1.168 0.244031
## Year_fct2018:Flow:StationCodeSTTD -5.762e-04 9.461e-04 -0.609 0.543101
## Year_fct2019:Flow:StationCodeSTTD -7.217e-04 8.369e-04 -0.862 0.389363
## Year_fct2016:Flow:StationCodeLIB -1.086e-03 9.786e-04 -1.110 0.268090
## Year_fct2017:Flow:StationCodeLIB -2.723e-02 1.387e-02 -1.964 0.050720 .
## Year_fct2018:Flow:StationCodeLIB -2.727e-05 9.181e-04 -0.030 0.976333
## Year_fct2019:Flow:StationCodeLIB -2.769e-04 7.181e-04 -0.386 0.700161
## Year_fct2016:Flow:StationCodeRVB -2.024e-03 7.498e-04 -2.700 0.007442 **
## Year_fct2017:Flow:StationCodeRVB -2.759e-02 1.386e-02 -1.990 0.047745 *
## Year_fct2018:Flow:StationCodeRVB -8.088e-04 6.547e-04 -1.235 0.217949
## Year_fct2019:Flow:StationCodeRVB -4.458e-04 5.826e-04 -0.765 0.444982
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.311 on 232 degrees of freedom
## Multiple R-squared: 0.9237, Adjusted R-squared: 0.9102
## F-statistic: 68.51 on 41 and 232 DF, p-value: < 2.2e-16
df_chla_c2_lag %>%
drop_na(Chla_log, lag1, lag2) %>%
plot_lm_diag(Chla_log, m_lm_flow3_lag2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
shapiro.test(residuals(m_lm_flow3_lag2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_lm_flow3_lag2)
## W = 0.95757, p-value = 3.559e-07
Anova(m_lm_flow3_lag2, type = 3, contrasts = list(topic = contr.sum, sys = contr.sum))
## Anova Table (Type III tests)
##
## Response: Chla_log
## Sum Sq Df F value Pr(>F)
## (Intercept) 8.2491 1 85.3064 < 2.2e-16 ***
## Year_fct 1.5818 4 4.0896 0.0031915 **
## Flow 0.8952 1 9.2578 0.0026149 **
## StationCode 2.6225 3 9.0401 1.100e-05 ***
## lag1 7.7523 1 80.1687 < 2.2e-16 ***
## lag2 0.3826 1 3.9563 0.0478710 *
## Year_fct:Flow 0.8906 4 2.3024 0.0593683 .
## Year_fct:StationCode 4.2199 12 3.6366 5.227e-05 ***
## Flow:StationCode 1.6269 3 5.6082 0.0009948 ***
## Year_fct:Flow:StationCode 1.6343 12 1.4084 0.1627989
## Residuals 22.4343 232
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The model diagnostics look okay, but not as good as with the GAM
models. Note that the 3-way interaction between Year, Station, and Flow
isn’t significant in the ANOVA table. We’ll use
m_lm_flow3_lag2
in the model selection process.
rm(m_lm_flow3, m_lm_flow3_lag1)
Let’s try a linear model using all two-way interactions between Year, Weekly Average Flow, and Station. Initially, we’ll run the model without accounting for serial autocorrelation.
m_lm_flow2 <- lm(Chla_log ~ (Year_fct + Flow + StationCode)^2, data = df_chla_c2)
Lets look at the model summary and diagnostics:
summary(m_lm_flow2)
##
## Call:
## lm(formula = Chla_log ~ (Year_fct + Flow + StationCode)^2, data = df_chla_c2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.02115 -0.21555 -0.02562 0.20756 1.30970
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.6720421 0.1037997 93.180 < 2e-16 ***
## Year_fct2016 -0.4032148 0.1425002 -2.830 0.00499 **
## Year_fct2017 -0.3833291 0.1386668 -2.764 0.00607 **
## Year_fct2018 -0.2825822 0.1338134 -2.112 0.03557 *
## Year_fct2019 -0.0926685 0.1338116 -0.693 0.48917
## Flow -0.0015353 0.0002749 -5.585 5.43e-08 ***
## StationCodeSTTD -1.0366460 0.1394711 -7.433 1.24e-12 ***
## StationCodeLIB -2.1586815 0.3294116 -6.553 2.62e-10 ***
## StationCodeRVB -2.9189896 0.5835889 -5.002 9.93e-07 ***
## Year_fct2016:Flow -0.0003420 0.0001541 -2.220 0.02721 *
## Year_fct2017:Flow -0.0002571 0.0001435 -1.791 0.07431 .
## Year_fct2018:Flow -0.0001841 0.0001438 -1.280 0.20143
## Year_fct2019:Flow -0.0001688 0.0001439 -1.173 0.24161
## Year_fct2016:StationCodeSTTD 0.8302909 0.1985714 4.181 3.86e-05 ***
## Year_fct2017:StationCodeSTTD 0.4036756 0.2070786 1.949 0.05223 .
## Year_fct2018:StationCodeSTTD -0.3665744 0.1925111 -1.904 0.05789 .
## Year_fct2019:StationCodeSTTD -1.0430308 0.1897975 -5.495 8.63e-08 ***
## Year_fct2016:StationCodeLIB 0.9218534 0.3150367 2.926 0.00371 **
## Year_fct2017:StationCodeLIB 0.2307078 0.2962035 0.779 0.43669
## Year_fct2018:StationCodeLIB -1.8797945 0.3149611 -5.968 7.08e-09 ***
## Year_fct2019:StationCodeLIB -0.5044002 0.3185041 -1.584 0.11438
## Year_fct2016:StationCodeRVB 2.5842980 0.8235230 3.138 0.00188 **
## Year_fct2017:StationCodeRVB 1.4826319 0.7325138 2.024 0.04390 *
## Year_fct2018:StationCodeRVB 0.6227655 0.6661707 0.935 0.35066
## Year_fct2019:StationCodeRVB -0.1434418 0.6796939 -0.211 0.83301
## Flow:StationCodeSTTD 0.0035789 0.0003591 9.966 < 2e-16 ***
## Flow:StationCodeLIB 0.0014129 0.0003025 4.670 4.64e-06 ***
## Flow:StationCodeRVB 0.0017470 0.0002547 6.860 4.26e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3849 on 286 degrees of freedom
## Multiple R-squared: 0.8732, Adjusted R-squared: 0.8612
## F-statistic: 72.93 on 27 and 286 DF, p-value: < 2.2e-16
df_chla_c2 %>% plot_lm_diag(Chla_log, m_lm_flow2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
shapiro.test(residuals(m_lm_flow2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_lm_flow2)
## W = 0.97497, p-value = 2.752e-05
acf(residuals(m_lm_flow2))
Box.test(residuals(m_lm_flow2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_lm_flow2)
## X-squared = 214.85, df = 20, p-value < 2.2e-16
The residuals deviate from a normal distribution according to visual inspection and the Shapiro-Wilk normality test. Also, model definitely has residual autocorrelation as indicated by the ACF plot and the Box-Ljung test.
Now, we’ll try to deal with the residual autocorrelation and the non-normal residuals. We’ll run a series of linear models adding 1 and 2 lag terms and compare how well they correct for autocorrelation.
m_lm_flow2_lag1 <- df_chla_c2_lag %>%
drop_na(Chla_log, lag1) %>%
lm(Chla_log ~ (Year_fct + Flow + StationCode)^2 + lag1, data = .)
acf(residuals(m_lm_flow2_lag1))
Box.test(residuals(m_lm_flow2_lag1), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_lm_flow2_lag1)
## X-squared = 33.835, df = 20, p-value = 0.02727
m_lm_flow2_lag2 <- df_chla_c2_lag %>%
drop_na(Chla_log, lag1, lag2) %>%
lm(Chla_log ~ (Year_fct + Flow + StationCode)^2 + lag1 + lag2, data = .)
acf(residuals(m_lm_flow2_lag2))
Box.test(residuals(m_lm_flow2_lag2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_lm_flow2_lag2)
## X-squared = 16.487, df = 20, p-value = 0.686
The model with 2 lag terms seems to be okay in terms of serial autocorrelation. Let’s use AIC to see how they compare.
AIC(m_lm_flow2, m_lm_flow2_lag1, m_lm_flow2_lag2)
## df AIC
## m_lm_flow2 29 320.2073
## m_lm_flow2_lag1 30 179.7601
## m_lm_flow2_lag2 31 173.1492
Again, it looks like the lag2 model has the best fit according to the AIC values. Let’s take a closer look at that one.
summary(m_lm_flow2_lag2)
##
## Call:
## lm(formula = Chla_log ~ (Year_fct + Flow + StationCode)^2 + lag1 +
## lag2, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.24138 -0.14868 -0.01613 0.13053 0.87049
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.5102528 0.5172489 8.720 4.39e-16 ***
## Year_fct2016 -0.2225024 0.1268556 -1.754 0.080689 .
## Year_fct2017 -0.2049353 0.1228178 -1.669 0.096477 .
## Year_fct2018 -0.1265295 0.1180393 -1.072 0.284812
## Year_fct2019 0.0042951 0.1172864 0.037 0.970817
## Flow -0.0007791 0.0002437 -3.197 0.001573 **
## StationCodeSTTD -0.4510406 0.1311688 -3.439 0.000687 ***
## StationCodeLIB -0.8412407 0.3153205 -2.668 0.008144 **
## StationCodeRVB -1.4624572 0.5715023 -2.559 0.011103 *
## lag1 0.6683254 0.0642124 10.408 < 2e-16 ***
## lag2 -0.1363594 0.0621237 -2.195 0.029109 *
## Year_fct2016:Flow -0.0002104 0.0001502 -1.400 0.162647
## Year_fct2017:Flow -0.0001343 0.0001373 -0.978 0.328924
## Year_fct2018:Flow -0.0001202 0.0001369 -0.878 0.380766
## Year_fct2019:Flow -0.0001003 0.0001367 -0.733 0.464045
## Year_fct2016:StationCodeSTTD 0.4173963 0.1782275 2.342 0.019989 *
## Year_fct2017:StationCodeSTTD 0.1784208 0.1852472 0.963 0.336426
## Year_fct2018:StationCodeSTTD -0.1664026 0.1689473 -0.985 0.325630
## Year_fct2019:StationCodeSTTD -0.5590542 0.1729367 -3.233 0.001395 **
## Year_fct2016:StationCodeLIB 0.3796717 0.2958825 1.283 0.200645
## Year_fct2017:StationCodeLIB 0.0333266 0.2679057 0.124 0.901104
## Year_fct2018:StationCodeLIB -1.1124628 0.2993880 -3.716 0.000251 ***
## Year_fct2019:StationCodeLIB -0.3875763 0.2907185 -1.333 0.183720
## Year_fct2016:StationCodeRVB 1.5642012 0.8259346 1.894 0.059427 .
## Year_fct2017:StationCodeRVB 0.6738241 0.6836514 0.986 0.325293
## Year_fct2018:StationCodeRVB 0.4731218 0.6102908 0.775 0.438949
## Year_fct2019:StationCodeRVB -0.0331205 0.6185916 -0.054 0.957344
## Flow:StationCodeSTTD 0.0017758 0.0003334 5.327 2.27e-07 ***
## Flow:StationCodeLIB 0.0008313 0.0002653 3.133 0.001941 **
## Flow:StationCodeRVB 0.0009021 0.0002239 4.030 7.46e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3141 on 244 degrees of freedom
## Multiple R-squared: 0.9182, Adjusted R-squared: 0.9084
## F-statistic: 94.38 on 29 and 244 DF, p-value: < 2.2e-16
df_chla_c2_lag %>%
drop_na(Chla_log, lag1, lag2) %>%
plot_lm_diag(Chla_log, m_lm_flow2_lag2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
shapiro.test(residuals(m_lm_flow2_lag2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_lm_flow2_lag2)
## W = 0.95878, p-value = 5.036e-07
Anova(m_lm_flow2_lag2, type = 3, contrasts = list(topic = contr.sum, sys = contr.sum))
## Anova Table (Type III tests)
##
## Response: Chla_log
## Sum Sq Df F value Pr(>F)
## (Intercept) 7.5000 1 76.0331 4.387e-16 ***
## Year_fct 0.6129 4 1.5533 0.187469
## Flow 1.0081 1 10.2202 0.001573 **
## StationCode 2.2025 3 7.4427 8.661e-05 ***
## lag1 10.6856 1 108.3274 < 2.2e-16 ***
## lag2 0.4752 1 4.8179 0.029109 *
## Year_fct:Flow 0.2845 4 0.7209 0.578345
## Year_fct:StationCode 5.2495 12 4.4349 2.004e-06 ***
## Flow:StationCode 2.8070 3 9.4856 5.971e-06 ***
## Residuals 24.0685 244
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The model diagnostics look somewhat worse than those for the 3-way
interaction model. Note that the 2-way interaction between Year and Flow
isn’t significant. We’ll use m_lm_flow2_lag2
in the model
selection process.
rm(m_lm_flow2, m_lm_flow2_lag1)
We’ll try running a linear model using a two-way interaction between Year and Station but not including flow as a predictor. Initially, we’ll run the model without accounting for serial autocorrelation.
m_lm_cat2 <- lm(Chla_log ~ Year_fct * StationCode, data = df_chla_c2)
Lets look at the model summary and diagnostics:
summary(m_lm_cat2)
##
## Call:
## lm(formula = Chla_log ~ Year_fct * StationCode, data = df_chla_c2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.35952 -0.25359 -0.05221 0.26722 1.31786
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.45473 0.11172 84.627 < 2e-16 ***
## Year_fct2016 -0.40045 0.16354 -2.449 0.014927 *
## Year_fct2017 -0.19510 0.15566 -1.253 0.211051
## Year_fct2018 -0.26862 0.15355 -1.749 0.081263 .
## Year_fct2019 -0.11515 0.15355 -0.750 0.453881
## StationCodeSTTD -0.75644 0.15566 -4.860 1.92e-06 ***
## StationCodeLIB -1.74964 0.14989 -11.673 < 2e-16 ***
## StationCodeRVB -1.80959 0.14989 -12.073 < 2e-16 ***
## Year_fct2016:StationCodeSTTD 0.84307 0.22969 3.670 0.000287 ***
## Year_fct2017:StationCodeSTTD 0.10665 0.23653 0.451 0.652400
## Year_fct2018:StationCodeSTTD -0.35014 0.22269 -1.572 0.116942
## Year_fct2019:StationCodeSTTD -0.88642 0.21865 -4.054 6.45e-05 ***
## Year_fct2016:StationCodeLIB 1.38154 0.22018 6.275 1.25e-09 ***
## Year_fct2017:StationCodeLIB 0.21272 0.21439 0.992 0.321898
## Year_fct2018:StationCodeLIB -1.88368 0.23137 -8.141 1.12e-14 ***
## Year_fct2019:StationCodeLIB -0.46150 0.24192 -1.908 0.057411 .
## Year_fct2016:StationCodeRVB 0.60290 0.22371 2.695 0.007444 **
## Year_fct2017:StationCodeRVB -0.07752 0.21439 -0.362 0.717928
## Year_fct2018:StationCodeRVB -0.06960 0.21132 -0.329 0.742124
## Year_fct2019:StationCodeRVB -0.65957 0.21132 -3.121 0.001980 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4469 on 294 degrees of freedom
## Multiple R-squared: 0.8243, Adjusted R-squared: 0.8129
## F-statistic: 72.59 on 19 and 294 DF, p-value: < 2.2e-16
df_chla_c2 %>% plot_lm_diag(Chla_log, m_lm_cat2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
shapiro.test(residuals(m_lm_cat2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_lm_cat2)
## W = 0.98856, p-value = 0.01425
acf(residuals(m_lm_cat2))
Box.test(residuals(m_lm_cat2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_lm_cat2)
## X-squared = 331.73, df = 20, p-value < 2.2e-16
Besides the Shapiro-Wilk normality test showing that the residuals aren’t normal, the diagnostic plots look pretty good. However, the residuals are autocorrelated.
Now, we’ll try to deal with the residual autocorrelation and the non-normal residuals. We’ll run a series of linear models adding 1 and 2 lag terms and compare how well they correct for autocorrelation.
m_lm_cat2_lag1 <- df_chla_c2_lag %>%
drop_na(Chla_log, lag1) %>%
lm(Chla_log ~ Year_fct * StationCode + lag1, data = .)
acf(residuals(m_lm_cat2_lag1))
Box.test(residuals(m_lm_cat2_lag1), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_lm_cat2_lag1)
## X-squared = 29.858, df = 20, p-value = 0.07219
m_lm_cat2_lag2 <- df_chla_c2_lag %>%
drop_na(Chla_log, lag1, lag2) %>%
lm(Chla_log ~ Year_fct * StationCode + lag1 + lag2, data = .)
acf(residuals(m_lm_cat2_lag2))
Box.test(residuals(m_lm_cat2_lag2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_lm_cat2_lag2)
## X-squared = 16.063, df = 20, p-value = 0.7127
The model with 2 lag terms seems to be okay in terms of serial autocorrelation. Let’s use AIC to see how they compare.
AIC(m_lm_cat2, m_lm_cat2_lag1, m_lm_cat2_lag2)
## df AIC
## m_lm_cat2 21 406.6058
## m_lm_cat2_lag1 22 202.1676
## m_lm_cat2_lag2 23 189.5969
Again, it looks like the lag2 model has the best fit according to the AIC values. Let’s take a closer look at that one.
summary(m_lm_cat2_lag2)
##
## Call:
## lm(formula = Chla_log ~ Year_fct * StationCode + lag1 + lag2,
## data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.32999 -0.16419 -0.02045 0.15089 0.85556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.459253 0.493928 7.004 2.26e-11 ***
## Year_fct2016 -0.182532 0.129908 -1.405 0.161226
## Year_fct2017 -0.078006 0.122065 -0.639 0.523366
## Year_fct2018 -0.090019 0.120957 -0.744 0.457437
## Year_fct2019 0.002086 0.120402 0.017 0.986191
## StationCodeSTTD -0.211284 0.127028 -1.663 0.097499 .
## StationCodeLIB -0.625336 0.146282 -4.275 2.72e-05 ***
## StationCodeRVB -0.644967 0.149378 -4.318 2.27e-05 ***
## lag1 0.806179 0.061397 13.131 < 2e-16 ***
## lag2 -0.175878 0.063486 -2.770 0.006017 **
## Year_fct2016:StationCodeSTTD 0.336363 0.184635 1.822 0.069675 .
## Year_fct2017:StationCodeSTTD -0.015832 0.188606 -0.084 0.933169
## Year_fct2018:StationCodeSTTD -0.128766 0.175323 -0.734 0.463356
## Year_fct2019:StationCodeSTTD -0.393012 0.176281 -2.229 0.026665 *
## Year_fct2016:StationCodeLIB 0.535094 0.185883 2.879 0.004337 **
## Year_fct2017:StationCodeLIB 0.064763 0.167490 0.387 0.699326
## Year_fct2018:StationCodeLIB -0.811907 0.205745 -3.946 0.000103 ***
## Year_fct2019:StationCodeLIB -0.214839 0.196894 -1.091 0.276254
## Year_fct2016:StationCodeRVB 0.233510 0.177836 1.313 0.190356
## Year_fct2017:StationCodeRVB -0.061986 0.167397 -0.370 0.711475
## Year_fct2018:StationCodeRVB -0.025504 0.164606 -0.155 0.876994
## Year_fct2019:StationCodeRVB -0.285560 0.167246 -1.707 0.088974 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3279 on 252 degrees of freedom
## Multiple R-squared: 0.9079, Adjusted R-squared: 0.9002
## F-statistic: 118.2 on 21 and 252 DF, p-value: < 2.2e-16
df_chla_c2_lag %>%
drop_na(Chla_log, lag1, lag2) %>%
plot_lm_diag(Chla_log, m_lm_cat2_lag2)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
shapiro.test(residuals(m_lm_cat2_lag2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_lm_cat2_lag2)
## W = 0.94723, p-value = 2.28e-08
Anova(m_lm_cat2_lag2, type = 3, contrasts = list(topic = contr.sum, sys = contr.sum))
## Anova Table (Type III tests)
##
## Response: Chla_log
## Sum Sq Df F value Pr(>F)
## (Intercept) 5.2737 1 49.0497 2.262e-11 ***
## Year_fct 0.3050 4 0.7092 0.5862914
## StationCode 2.5688 3 7.9641 4.295e-05 ***
## lag1 18.5375 1 172.4135 < 2.2e-16 ***
## lag2 0.8252 1 7.6747 0.0060171 **
## Year_fct:StationCode 3.8050 12 2.9492 0.0007352 ***
## Residuals 27.0944 252
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The model diagnostics don’t look that great. However, we’ll use
m_lm_cat2_lag2
in the model selection process.
rm(m_lm_cat2, m_lm_cat2_lag1)
Finally, we’ll try running a GAM model using smooths for weekly average flow by Station and Year and a smooth term for week number to account for seasonality. Initially, we’ll run the model without accounting for serial autocorrelation.
m_gam_sflow <- gam(
Chla_log ~ s(Flow, by = StationCode) + s(Flow, by = Year_fct) + Year_fct * StationCode + s(Week, bs = "cc", k = 5),
data = df_chla_c2,
method = "REML",
knots = list(week = c(0, 52))
)
Lets look at the model summary and diagnostics:
summary(m_gam_sflow)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ s(Flow, by = StationCode) + s(Flow, by = Year_fct) +
## Year_fct * StationCode + s(Week, bs = "cc", k = 5)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.9415 0.4617 15.035 < 2e-16 ***
## Year_fct2016 -0.8407 0.3009 -2.794 0.005564 **
## Year_fct2017 -0.5569 0.2631 -2.117 0.035152 *
## Year_fct2018 -0.4401 0.2562 -1.718 0.086918 .
## Year_fct2019 -0.2726 0.2859 -0.953 0.341160
## StationCodeSTTD -8.1285 37.3586 -0.218 0.827913
## StationCodeLIB 0.4849 0.6923 0.700 0.484250
## StationCodeRVB 0.5447 0.6180 0.881 0.378860
## Year_fct2016:StationCodeSTTD 0.8281 0.1736 4.771 2.95e-06 ***
## Year_fct2017:StationCodeSTTD 0.3340 0.1816 1.839 0.066926 .
## Year_fct2018:StationCodeSTTD -0.2712 0.1689 -1.606 0.109483
## Year_fct2019:StationCodeSTTD -0.9023 0.1695 -5.324 2.08e-07 ***
## Year_fct2016:StationCodeLIB 1.3519 0.3581 3.776 0.000195 ***
## Year_fct2017:StationCodeLIB 0.4174 0.2613 1.598 0.111254
## Year_fct2018:StationCodeLIB -1.6855 0.2793 -6.034 5.05e-09 ***
## Year_fct2019:StationCodeLIB -0.4878 0.3338 -1.461 0.145045
## Year_fct2016:StationCodeRVB 1.4699 0.9618 1.528 0.127582
## Year_fct2017:StationCodeRVB 0.5908 0.6516 0.907 0.365409
## Year_fct2018:StationCodeRVB 0.2254 0.5915 0.381 0.703400
## Year_fct2019:StationCodeRVB -0.2519 0.8749 -0.288 0.773628
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Flow):StationCodeRD22 1.137e-05 2.237e-05 0.071 0.999
## s(Flow):StationCodeSTTD 2.120e+00 2.315e+00 72.452 < 2e-16 ***
## s(Flow):StationCodeLIB 1.000e+00 1.000e+00 23.524 2.46e-06 ***
## s(Flow):StationCodeRVB 1.000e+00 1.000e+00 38.494 < 2e-16 ***
## s(Flow):Year_fct2015 1.000e+00 1.000e+00 31.991 < 2e-16 ***
## s(Flow):Year_fct2016 1.309e+00 1.567e+00 29.104 3.49e-07 ***
## s(Flow):Year_fct2017 1.000e+00 1.000e+00 38.052 < 2e-16 ***
## s(Flow):Year_fct2018 1.000e+00 1.000e+00 37.232 < 2e-16 ***
## s(Flow):Year_fct2019 2.159e+00 2.768e+00 15.315 < 2e-16 ***
## s(Week) 2.719e+00 3.000e+00 25.866 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Rank: 103/104
## R-sq.(adj) = 0.895 Deviance explained = 90.6%
## -REML = 127.47 Scale est. = 0.11201 n = 314
appraise(m_gam_sflow)
shapiro.test(residuals(m_gam_sflow))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_sflow)
## W = 0.98185, p-value = 0.0005262
k.check(m_gam_sflow)
## k' edf k-index p-value
## s(Flow):StationCodeRD22 9 1.137053e-05 1.0644839 0.8375
## s(Flow):StationCodeSTTD 9 2.120242e+00 1.0644839 0.8475
## s(Flow):StationCodeLIB 9 1.000027e+00 1.0644839 0.8500
## s(Flow):StationCodeRVB 9 1.000030e+00 1.0644839 0.8650
## s(Flow):Year_fct2015 9 1.000027e+00 1.0644839 0.8475
## s(Flow):Year_fct2016 9 1.309135e+00 1.0644839 0.8550
## s(Flow):Year_fct2017 9 1.000037e+00 1.0644839 0.8500
## s(Flow):Year_fct2018 9 1.000033e+00 1.0644839 0.8675
## s(Flow):Year_fct2019 9 2.159088e+00 1.0644839 0.8625
## s(Week) 3 2.719405e+00 0.9426987 0.1400
concurvity(m_gam_sflow, full = FALSE)$worst
## para s(Flow):StationCodeRD22
## para 1.000000e+00 2.643318e-01
## s(Flow):StationCodeRD22 2.643318e-01 1.000000e+00
## s(Flow):StationCodeSTTD 2.261153e-01 1.761594e-06
## s(Flow):StationCodeLIB 2.292994e-01 7.714390e-07
## s(Flow):StationCodeRVB 2.802548e-01 1.376958e-06
## s(Flow):Year_fct2015 2.324841e-01 3.251023e-01
## s(Flow):Year_fct2016 1.907664e-01 2.856469e-01
## s(Flow):Year_fct2017 1.940114e-01 2.319233e-01
## s(Flow):Year_fct2018 1.910646e-01 2.226980e-01
## s(Flow):Year_fct2019 1.880875e-01 3.424988e-01
## s(Week) 1.733484e-31 1.574509e-01
## s(Flow):StationCodeSTTD s(Flow):StationCodeLIB
## para 2.261152e-01 2.292994e-01
## s(Flow):StationCodeRD22 1.418504e-06 3.146502e-07
## s(Flow):StationCodeSTTD 1.000000e+00 1.787493e-07
## s(Flow):StationCodeLIB 1.140567e-07 1.000000e+00
## s(Flow):StationCodeRVB 1.777024e-07 1.962974e-11
## s(Flow):Year_fct2015 2.212699e-01 9.174395e-01
## s(Flow):Year_fct2016 1.576930e-01 5.098821e-01
## s(Flow):Year_fct2017 1.064600e-01 3.817659e-01
## s(Flow):Year_fct2018 1.427320e-01 3.281525e-01
## s(Flow):Year_fct2019 3.311807e-01 2.162509e-01
## s(Week) 5.820526e-02 6.532376e-02
## s(Flow):StationCodeRVB s(Flow):Year_fct2015
## para 2.802548e-01 2.324841e-01
## s(Flow):StationCodeRD22 1.232514e-06 3.250229e-01
## s(Flow):StationCodeSTTD 2.346023e-07 2.212756e-01
## s(Flow):StationCodeLIB 1.618413e-11 9.174394e-01
## s(Flow):StationCodeRVB 1.000000e+00 9.295169e-01
## s(Flow):Year_fct2015 9.295169e-01 1.000000e+00
## s(Flow):Year_fct2016 4.867459e-01 3.209744e-20
## s(Flow):Year_fct2017 9.999383e-01 1.418664e-21
## s(Flow):Year_fct2018 6.431556e-01 7.900257e-21
## s(Flow):Year_fct2019 4.786662e-01 1.803157e-20
## s(Week) 1.477669e-01 1.014688e-01
## s(Flow):Year_fct2016 s(Flow):Year_fct2017
## para 1.907664e-01 1.940114e-01
## s(Flow):StationCodeRD22 2.856517e-01 2.318611e-01
## s(Flow):StationCodeSTTD 1.576967e-01 1.064645e-01
## s(Flow):StationCodeLIB 5.098822e-01 3.817659e-01
## s(Flow):StationCodeRVB 4.867459e-01 9.999383e-01
## s(Flow):Year_fct2015 3.417427e-20 1.074026e-21
## s(Flow):Year_fct2016 1.000000e+00 8.226970e-26
## s(Flow):Year_fct2017 1.099840e-25 1.000000e+00
## s(Flow):Year_fct2018 1.086091e-25 1.775469e-25
## s(Flow):Year_fct2019 1.823744e-25 6.782206e-27
## s(Week) 1.081710e-01 6.038884e-02
## s(Flow):Year_fct2018 s(Flow):Year_fct2019 s(Week)
## para 1.910646e-01 1.880875e-01 2.183715e-31
## s(Flow):StationCodeRD22 2.227087e-01 3.424802e-01 1.574083e-01
## s(Flow):StationCodeSTTD 1.427425e-01 3.311824e-01 5.820393e-02
## s(Flow):StationCodeLIB 3.281525e-01 2.162509e-01 6.532370e-02
## s(Flow):StationCodeRVB 6.431556e-01 4.786662e-01 1.477669e-01
## s(Flow):Year_fct2015 8.133545e-21 1.870799e-20 1.014688e-01
## s(Flow):Year_fct2016 1.363686e-25 6.362499e-26 1.081710e-01
## s(Flow):Year_fct2017 1.645895e-25 7.481050e-27 6.038884e-02
## s(Flow):Year_fct2018 1.000000e+00 1.794354e-25 7.451261e-02
## s(Flow):Year_fct2019 1.956784e-25 1.000000e+00 7.697321e-02
## s(Week) 7.451261e-02 7.697321e-02 1.000000e+00
draw(m_gam_sflow, select = 10, residuals = TRUE, rug = FALSE)
plot(m_gam_sflow, pages = 1, all.terms = TRUE)
acf(residuals(m_gam_sflow))
Box.test(residuals(m_gam_sflow), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_sflow)
## X-squared = 139.11, df = 20, p-value < 2.2e-16
The diagnostic plots look really good. However, the residuals are autocorrelated.
Now, we’ll try to deal with the residual autocorrelation. We’ll run a series of models adding 1 and 2 lag terms and compare how well they correct for autocorrelation.
m_gam_sflow_lag1 <- gam(
Chla_log ~ s(Flow, by = StationCode) + s(Flow, by = Year_fct) + Year_fct * StationCode + s(Week, bs = "cc", k = 5) + lag1,
data = df_chla_c2_lag,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_sflow_lag1))
Box.test(residuals(m_gam_sflow_lag1), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_sflow_lag1)
## X-squared = 31.058, df = 20, p-value = 0.05443
m_gam_sflow_lag2 <- gam(
Chla_log ~ s(Flow, by = StationCode) + s(Flow, by = Year_fct) + Year_fct * StationCode + s(Week, bs = "cc", k = 5) + lag1 + lag2,
data = df_chla_c2_lag,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_sflow_lag2))
Box.test(residuals(m_gam_sflow_lag2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_sflow_lag2)
## X-squared = 20.838, df = 20, p-value = 0.4067
The model with 2 lag terms seems to be okay in terms of serial autocorrelation. Let’s use AIC to see how they compare.
AIC(m_gam_sflow, m_gam_sflow_lag1, m_gam_sflow_lag2)
## df AIC
## m_gam_sflow 35.59213 239.6761
## m_gam_sflow_lag1 35.54780 146.3048
## m_gam_sflow_lag2 35.57415 141.1547
It looks like the lag2 model has the best fit according to the AIC values. Let’s take a closer look at that one.
summary(m_gam_sflow_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ s(Flow, by = StationCode) + s(Flow, by = Year_fct) +
## Year_fct * StationCode + s(Week, bs = "cc", k = 5) + lag1 +
## lag2
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.78540 0.62649 6.042 5.75e-09 ***
## Year_fct2016 -0.59159 0.31742 -1.864 0.06358 .
## Year_fct2017 -0.33673 0.29720 -1.133 0.25834
## Year_fct2018 -0.27953 0.29071 -0.962 0.33725
## Year_fct2019 -0.05803 0.29006 -0.200 0.84160
## StationCodeSTTD -9.99171 22.15069 -0.451 0.65234
## StationCodeLIB 0.49217 0.67725 0.727 0.46811
## StationCodeRVB 0.55317 0.64109 0.863 0.38907
## lag1 0.56833 0.06260 9.078 < 2e-16 ***
## lag2 -0.13552 0.05828 -2.325 0.02089 *
## Year_fct2016:StationCodeSTTD 0.52390 0.16786 3.121 0.00202 **
## Year_fct2017:StationCodeSTTD 0.23333 0.17447 1.337 0.18237
## Year_fct2018:StationCodeSTTD -0.10863 0.15940 -0.681 0.49622
## Year_fct2019:StationCodeSTTD -0.52711 0.16512 -3.192 0.00160 **
## Year_fct2016:StationCodeLIB 0.83072 0.32873 2.527 0.01214 *
## Year_fct2017:StationCodeLIB 0.35730 0.29392 1.216 0.22532
## Year_fct2018:StationCodeLIB -0.96976 0.31585 -3.070 0.00238 **
## Year_fct2019:StationCodeLIB -0.14044 0.31112 -0.451 0.65210
## Year_fct2016:StationCodeRVB 0.99033 0.82897 1.195 0.23340
## Year_fct2017:StationCodeRVB 0.08019 0.68487 0.117 0.90689
## Year_fct2018:StationCodeRVB 0.04818 0.61823 0.078 0.93795
## Year_fct2019:StationCodeRVB -0.67188 0.62938 -1.068 0.28680
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Flow):StationCodeRD22 1.602e-05 3.192e-05 0.001 0.999860
## s(Flow):StationCodeSTTD 1.955e+00 2.149e+00 23.362 2.24e-07 ***
## s(Flow):StationCodeLIB 1.000e+00 1.000e+00 10.957 0.001076 **
## s(Flow):StationCodeRVB 1.000e+00 1.000e+00 17.521 4.04e-05 ***
## s(Flow):Year_fct2015 1.323e+00 1.564e+00 8.370 0.000908 ***
## s(Flow):Year_fct2016 1.010e+00 1.019e+00 18.117 3.07e-05 ***
## s(Flow):Year_fct2017 1.000e+00 1.000e+00 16.652 6.13e-05 ***
## s(Flow):Year_fct2018 1.000e+00 1.000e+00 16.804 5.69e-05 ***
## s(Flow):Year_fct2019 1.000e+00 1.000e+00 15.502 0.000108 ***
## s(Week) 2.510e+00 3.000e+00 10.050 1.08e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Rank: 105/106
## R-sq.(adj) = 0.92 Deviance explained = 93%
## -REML = 80.961 Scale est. = 0.086231 n = 274
appraise(m_gam_sflow_lag2)
shapiro.test(residuals(m_gam_sflow_lag2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_sflow_lag2)
## W = 0.96744, p-value = 7.155e-06
k.check(m_gam_sflow_lag2)
## k' edf k-index p-value
## s(Flow):StationCodeRD22 9 1.601793e-05 1.1504105 1.0000
## s(Flow):StationCodeSTTD 9 1.954583e+00 1.1504105 0.9950
## s(Flow):StationCodeLIB 9 1.000016e+00 1.1504105 0.9975
## s(Flow):StationCodeRVB 9 1.000014e+00 1.1504105 0.9925
## s(Flow):Year_fct2015 9 1.323433e+00 1.1504105 0.9900
## s(Flow):Year_fct2016 9 1.009550e+00 1.1504105 0.9925
## s(Flow):Year_fct2017 9 1.000007e+00 1.1504105 0.9950
## s(Flow):Year_fct2018 9 1.000019e+00 1.1504105 0.9950
## s(Flow):Year_fct2019 9 1.000143e+00 1.1504105 0.9900
## s(Week) 3 2.510248e+00 0.9407824 0.1625
concurvity(m_gam_sflow_lag2, full = FALSE)$worst
## para s(Flow):StationCodeRD22
## para 1.000000e+00 2.664237e-01
## s(Flow):StationCodeRD22 2.664234e-01 1.000000e+00
## s(Flow):StationCodeSTTD 2.226278e-01 1.638181e-06
## s(Flow):StationCodeLIB 2.262774e-01 4.733228e-07
## s(Flow):StationCodeRVB 2.846715e-01 1.811609e-06
## s(Flow):Year_fct2015 2.372263e-01 3.306389e-01
## s(Flow):Year_fct2016 1.896821e-01 3.062741e-01
## s(Flow):Year_fct2017 1.932414e-01 2.559599e-01
## s(Flow):Year_fct2018 1.897747e-01 2.486411e-01
## s(Flow):Year_fct2019 1.885812e-01 3.588243e-01
## s(Week) 1.158819e-31 1.678606e-01
## s(Flow):StationCodeSTTD s(Flow):StationCodeLIB
## para 2.226279e-01 2.262774e-01
## s(Flow):StationCodeRD22 3.662718e-06 5.732367e-08
## s(Flow):StationCodeSTTD 1.000000e+00 2.603309e-08
## s(Flow):StationCodeLIB 2.505693e-07 1.000000e+00
## s(Flow):StationCodeRVB 5.268892e-08 1.954079e-11
## s(Flow):Year_fct2015 2.169073e-01 9.582905e-01
## s(Flow):Year_fct2016 1.409557e-01 5.240970e-01
## s(Flow):Year_fct2017 9.562028e-02 4.111986e-01
## s(Flow):Year_fct2018 1.610252e-01 4.775918e-01
## s(Flow):Year_fct2019 3.478030e-01 1.863800e-01
## s(Week) 8.184826e-02 8.951237e-02
## s(Flow):StationCodeRVB s(Flow):Year_fct2015
## para 2.846715e-01 2.372263e-01
## s(Flow):StationCodeRD22 1.299236e-06 3.306299e-01
## s(Flow):StationCodeSTTD 2.670124e-08 2.169129e-01
## s(Flow):StationCodeLIB 1.082367e-11 9.582905e-01
## s(Flow):StationCodeRVB 1.000000e+00 9.204540e-01
## s(Flow):Year_fct2015 9.204540e-01 1.000000e+00
## s(Flow):Year_fct2016 4.552008e-01 1.152022e-21
## s(Flow):Year_fct2017 9.999652e-01 2.445211e-21
## s(Flow):Year_fct2018 6.738619e-01 1.662580e-21
## s(Flow):Year_fct2019 5.049372e-01 3.243414e-21
## s(Week) 1.440000e-01 1.209400e-01
## s(Flow):Year_fct2016 s(Flow):Year_fct2017
## para 1.896821e-01 1.932414e-01
## s(Flow):StationCodeRD22 3.062808e-01 2.560147e-01
## s(Flow):StationCodeSTTD 1.409590e-01 9.560616e-02
## s(Flow):StationCodeLIB 5.240970e-01 4.111984e-01
## s(Flow):StationCodeRVB 4.552008e-01 9.999652e-01
## s(Flow):Year_fct2015 2.908201e-21 1.553210e-21
## s(Flow):Year_fct2016 1.000000e+00 9.868853e-26
## s(Flow):Year_fct2017 2.030612e-25 1.000000e+00
## s(Flow):Year_fct2018 4.726143e-25 1.671147e-25
## s(Flow):Year_fct2019 7.395786e-26 2.911772e-26
## s(Week) 1.207275e-01 6.868218e-02
## s(Flow):Year_fct2018 s(Flow):Year_fct2019 s(Week)
## para 1.897747e-01 1.885812e-01 3.616743e-32
## s(Flow):StationCodeRD22 2.486213e-01 3.587966e-01 1.678500e-01
## s(Flow):StationCodeSTTD 1.610299e-01 3.478107e-01 8.184815e-02
## s(Flow):StationCodeLIB 4.775917e-01 1.863799e-01 8.951238e-02
## s(Flow):StationCodeRVB 6.738619e-01 5.049372e-01 1.440000e-01
## s(Flow):Year_fct2015 1.393761e-21 2.220073e-21 1.209400e-01
## s(Flow):Year_fct2016 1.159538e-25 9.089073e-26 1.207275e-01
## s(Flow):Year_fct2017 2.404126e-25 2.579184e-26 6.868218e-02
## s(Flow):Year_fct2018 1.000000e+00 9.247148e-26 8.522678e-02
## s(Flow):Year_fct2019 9.564460e-26 1.000000e+00 9.372902e-02
## s(Week) 8.522678e-02 9.372902e-02 1.000000e+00
draw(m_gam_sflow_lag2, select = 1:4, residuals = TRUE, rug = FALSE)
draw(m_gam_sflow_lag2, select = 5:9, residuals = TRUE, rug = FALSE)
draw(m_gam_sflow_lag2, select = 10, residuals = TRUE, rug = FALSE)
anova(m_gam_sflow_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ s(Flow, by = StationCode) + s(Flow, by = Year_fct) +
## Year_fct * StationCode + s(Week, bs = "cc", k = 5) + lag1 +
## lag2
##
## Parametric Terms:
## df F p-value
## Year_fct 4 2.543 0.0403
## StationCode 3 0.406 0.7490
## lag1 1 82.411 < 2e-16
## lag2 1 5.407 0.0209
## Year_fct:StationCode 12 5.961 4.38e-09
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Flow):StationCodeRD22 1.602e-05 3.192e-05 0.001 0.999860
## s(Flow):StationCodeSTTD 1.955e+00 2.149e+00 23.362 2.24e-07
## s(Flow):StationCodeLIB 1.000e+00 1.000e+00 10.957 0.001076
## s(Flow):StationCodeRVB 1.000e+00 1.000e+00 17.521 4.04e-05
## s(Flow):Year_fct2015 1.323e+00 1.564e+00 8.370 0.000908
## s(Flow):Year_fct2016 1.010e+00 1.019e+00 18.117 3.07e-05
## s(Flow):Year_fct2017 1.000e+00 1.000e+00 16.652 6.13e-05
## s(Flow):Year_fct2018 1.000e+00 1.000e+00 16.804 5.69e-05
## s(Flow):Year_fct2019 1.000e+00 1.000e+00 15.502 0.000108
## s(Week) 2.510e+00 3.000e+00 10.050 1.08e-06
The model diagnostics look a little worse than with the initial model
but they still look pretty good. Note that the approximate significance
of all smooth terms are greater than 0.05 except for the s(Week) term.
We’ll use m_gam_sflow_lag2
in the model selection
process.
rm(m_gam_sflow, m_gam_sflow_lag1)
Now we’ll compare the seven candidate models with AIC to select the one with the best fit. As a summary, here are the 7 models we are comparing:
m_gam_flow3_lag2
- GAM 3-way interactions
with s(Week) m_gam_flow2_lag2
- GAM 2-way interactions
with s(Week) m_gam_cat2_lag2
- GAM 2-way interaction
between Station and Year with s(Week) but without Flow m_lm_flow3_lag2
- LM 3-way interactions
without seasonal term m_lm_flow2_lag2
- LM 2-way interactions
without seasonal term m_lm_cat2_lag2
- LM 2-way interaction between
Station and Year but without Flow and seasonal term m_gam_sflow_lag2
- GAM using smooths for Flow
with s(Week) # AIC values
df_m_aic <-
AIC(
m_gam_flow3_lag2,
m_gam_flow2_lag2,
m_gam_cat2_lag2,
m_lm_flow3_lag2,
m_lm_flow2_lag2,
m_lm_cat2_lag2,
m_gam_sflow_lag2
) %>%
as_tibble(rownames = "Model") %>%
mutate(Model_Number = 1:7, .before = Model)
# BIC values
df_m_bic <-
BIC(
m_gam_flow3_lag2,
m_gam_flow2_lag2,
m_gam_cat2_lag2,
m_lm_flow3_lag2,
m_lm_flow2_lag2,
m_lm_cat2_lag2,
m_gam_sflow_lag2
) %>%
as_tibble(rownames = "Model")
# Combine AIC and BIC and calculate differences from lowest value
df_m_aic_bic <-
left_join(df_m_aic, df_m_bic, by = join_by(Model, df)) %>%
mutate(across(c(AIC, BIC), ~ .x - min(.x), .names = "{.col}_delta")) %>%
select(starts_with("Model"), df, starts_with("AIC"), starts_with("BIC"))
# Sort by AIC
df_m_aic_bic %>% arrange(AIC)
## # A tibble: 7 × 7
## Model_Number Model df AIC AIC_delta BIC BIC_delta
## <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 7 m_gam_sflow_lag2 35.6 141. 0 270. 0.697
## 2 2 m_gam_flow2_lag2 33.8 148. 6.85 270. 1.12
## 3 1 m_gam_flow3_lag2 45.8 154. 13.2 320. 50.9
## 4 5 m_lm_flow2_lag2 31 173. 32.0 285. 16.2
## 5 3 m_gam_cat2_lag2 25.6 176. 35.2 269. 0
## 6 4 m_lm_flow3_lag2 43 178. 36.7 333. 64.3
## 7 6 m_lm_cat2_lag2 23 190. 48.4 273. 3.71
Export the AIC/BIC table.
df_m_aic_bic %>%
arrange(AIC) %>%
mutate(across(where(is.numeric), ~ paste0(formatC(.x, digits = 1, format = "f"), "##"))) %>%
write_csv(here("manuscript_synthesis/results/tables/chl_aic_weekly_models.csv"))
According to AIC, model 7 (GAM using smooths for Flow with s(Week)) was the model with the best fit. BIC preferred model 3 (GAM 2-way interaction between Station and Year with s(Week) but without Flow) with model 7 coming in close second place. Before we proceed with model 7, let’s revisit the model diagnostics and take a closer look at how the back-transformed fitted values from the model match the observed values.
appraise(m_gam_sflow_lag2)
shapiro.test(residuals(m_gam_sflow_lag2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_sflow_lag2)
## W = 0.96744, p-value = 7.155e-06
k.check(m_gam_sflow_lag2)
## k' edf k-index p-value
## s(Flow):StationCodeRD22 9 1.601793e-05 1.1504105 0.9875
## s(Flow):StationCodeSTTD 9 1.954583e+00 1.1504105 0.9900
## s(Flow):StationCodeLIB 9 1.000016e+00 1.1504105 0.9925
## s(Flow):StationCodeRVB 9 1.000014e+00 1.1504105 0.9950
## s(Flow):Year_fct2015 9 1.323433e+00 1.1504105 0.9875
## s(Flow):Year_fct2016 9 1.009550e+00 1.1504105 0.9900
## s(Flow):Year_fct2017 9 1.000007e+00 1.1504105 0.9950
## s(Flow):Year_fct2018 9 1.000019e+00 1.1504105 0.9950
## s(Flow):Year_fct2019 9 1.000143e+00 1.1504105 0.9975
## s(Week) 3 2.510248e+00 0.9407824 0.1600
draw(m_gam_sflow_lag2, select = 1:4, residuals = TRUE, rug = FALSE)
draw(m_gam_sflow_lag2, select = 5:9, residuals = TRUE, rug = FALSE)
draw(m_gam_sflow_lag2, select = 10, residuals = TRUE, rug = FALSE)
anova(m_gam_sflow_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ s(Flow, by = StationCode) + s(Flow, by = Year_fct) +
## Year_fct * StationCode + s(Week, bs = "cc", k = 5) + lag1 +
## lag2
##
## Parametric Terms:
## df F p-value
## Year_fct 4 2.543 0.0403
## StationCode 3 0.406 0.7490
## lag1 1 82.411 < 2e-16
## lag2 1 5.407 0.0209
## Year_fct:StationCode 12 5.961 4.38e-09
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Flow):StationCodeRD22 1.602e-05 3.192e-05 0.001 0.999860
## s(Flow):StationCodeSTTD 1.955e+00 2.149e+00 23.362 2.24e-07
## s(Flow):StationCodeLIB 1.000e+00 1.000e+00 10.957 0.001076
## s(Flow):StationCodeRVB 1.000e+00 1.000e+00 17.521 4.04e-05
## s(Flow):Year_fct2015 1.323e+00 1.564e+00 8.370 0.000908
## s(Flow):Year_fct2016 1.010e+00 1.019e+00 18.117 3.07e-05
## s(Flow):Year_fct2017 1.000e+00 1.000e+00 16.652 6.13e-05
## s(Flow):Year_fct2018 1.000e+00 1.000e+00 16.804 5.69e-05
## s(Flow):Year_fct2019 1.000e+00 1.000e+00 15.502 0.000108
## s(Week) 2.510e+00 3.000e+00 10.050 1.08e-06
df_chla_c2_lag2 <- df_chla_c2_lag %>% drop_na(lag1, lag2)
df_m_gam_sflow_lag2_fit <- df_chla_c2_lag2 %>%
fitted_values(m_gam_sflow_lag2, data = .) %>%
mutate(fitted_bt = exp(.fitted) / 1000)
plt_m_gam_sflow_lag2_fit <- df_m_gam_sflow_lag2_fit %>%
ggplot(aes(x = fitted_bt, y = Chla)) +
geom_point() +
geom_abline(slope = 1, intercept = 0, color = "red") +
theme_bw() +
labs(
x = "Back-transformed Fitted Values",
y = "Observed Values"
)
plt_m_gam_sflow_lag2_fit
Let’s group by station.
plt_m_gam_sflow_lag2_fit + facet_wrap(vars(StationCode), scales = "free")
Now, group by year.
plt_m_gam_sflow_lag2_fit + facet_wrap(vars(Year_fct), scales = "free")
Everything looks pretty decent with this model. Not perfect, but pretty good given the number of data points. Note that variability does increase as the chlorophyll values increase. Before proceeding with model 7, let’s look more closely at its results.
# Calculate min and max flows for each station to narrow down x-axis in the plot
df_chla_flow_sta_summ <- df_chla_c2_lag2 %>%
summarize(
Flow_min = min(Flow),
Flow_max = max(Flow),
.by = c(StationCode)
) %>%
mutate(
Flow_buffer = (Flow_max - Flow_min) * 0.05,
Flow_min = Flow_min - Flow_buffer,
Flow_max = Flow_max + Flow_buffer
)
# Calculate effects of flow on chlorophyll for each station holding the
# non-focal variables constant - marginal effects/adjusted predictions
df_gam_flow_sta_eff <-
as.data.frame(
predict_response(
m_gam_sflow_lag2,
terms = c("Flow", "StationCode"),
margin = "marginalmeans"
),
terms_to_colnames = TRUE
) %>%
as_tibble() %>%
# Narrow down range of flow values for each station
left_join(df_chla_flow_sta_summ, by = join_by(StationCode)) %>%
filter(Flow >= Flow_min & Flow <= Flow_max) %>%
transmute(
StationCode,
Flow,
# Back calculate model fits and confidence levels
across(c(predicted, conf.low, conf.high), ~ exp(.x) / 1000)
)
# Create effects plot
plt_gam_flow_sta_eff <- df_gam_flow_sta_eff %>%
ggplot(aes(x = Flow, y = predicted)) +
geom_point(
data = df_chla_c2_lag2,
aes(y = Chla, color = Year_fct),
alpha = 0.6
) +
geom_line(linewidth = 1) +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.25) +
facet_wrap(vars(StationCode), scales = "free") +
theme_bw() +
labs(
x = "Flow (cfs)",
y = expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))
) +
scale_x_continuous(breaks = breaks_extended(6)) +
scale_color_viridis_d(name = "Year", option = "C")
plt_gam_flow_sta_eff
These results look reasonable.
# Calculate min and max flows for each station to narrow down x-axis in the plot
df_chla_flow_yr_summ <- df_chla_c2_lag2 %>%
summarize(
Flow_min = min(Flow),
Flow_max = max(Flow),
.by = c(Year_fct)
) %>%
mutate(
Flow_buffer = (Flow_max - Flow_min) * 0.05,
Flow_min = Flow_min - Flow_buffer,
Flow_max = Flow_max + Flow_buffer
)
# Calculate effects of flow on chlorophyll for each year holding the
# non-focal variables constant - marginal effects/adjusted predictions
df_gam_flow_yr_eff <-
as.data.frame(
predict_response(
m_gam_sflow_lag2,
terms = c("Flow", "Year_fct"),
margin = "marginalmeans"
),
terms_to_colnames = TRUE
) %>%
as_tibble() %>%
# Narrow down range of flow values for each station
left_join(df_chla_flow_yr_summ, by = join_by(Year_fct)) %>%
filter(Flow >= Flow_min & Flow <= Flow_max) %>%
transmute(
Year_fct,
Flow,
# Back calculate model fits and confidence levels
across(c(predicted, conf.low, conf.high), ~ exp(.x) / 1000)
)
# Create effects plot
plt_gam_flow_yr_eff <- df_gam_flow_yr_eff %>%
ggplot(aes(x = Flow, y = predicted)) +
geom_point(
data = df_chla_c2_lag2,
aes(y = Chla, color = StationCode),
alpha = 0.6
) +
geom_line(linewidth = 1) +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.25) +
facet_wrap(vars(Year_fct), scales = "free") +
theme_bw() +
labs(
x = "Flow (cfs)",
y = expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))
) +
scale_x_continuous(breaks = breaks_extended(6)) +
scale_color_viridis_d(name = "Station", option = "C") +
theme(
legend.margin = margin(0, 0, 0, 0),
legend.position = "inside",
legend.position.inside = c(0.8, 0.3)
)
plt_gam_flow_yr_eff
There is a lot of uncertainty in the model results at the highest flows. This seems problematic.
# Estimated marginal means for station by year
em_gam_sta_yr <- emmeans(m_gam_sflow_lag2, ~ StationCode | Year_fct)
# Tukey post-hoc contrasts
pairs(em_gam_sta_yr)
## Year_fct = 2015:
## contrast estimate SE df t.ratio p.value
## RD22 - STTD 3.922 4.145 240 0.946 0.7799
## RD22 - LIB -0.492 0.676 240 -0.729 0.8856
## RD22 - RVB -0.553 0.639 240 -0.865 0.8228
## STTD - LIB -4.414 4.145 240 -1.065 0.7113
## STTD - RVB -4.475 4.193 240 -1.067 0.7098
## LIB - RVB -0.061 0.798 240 -0.076 0.9998
##
## Year_fct = 2016:
## contrast estimate SE df t.ratio p.value
## RD22 - STTD 3.398 4.140 240 0.821 0.8446
## RD22 - LIB -1.323 0.679 240 -1.949 0.2104
## RD22 - RVB -1.544 0.721 240 -2.139 0.1437
## STTD - LIB -4.721 4.160 240 -1.135 0.6684
## STTD - RVB -4.941 4.163 240 -1.187 0.6356
## LIB - RVB -0.221 0.857 240 -0.257 0.9940
##
## Year_fct = 2017:
## contrast estimate SE df t.ratio p.value
## RD22 - STTD 3.689 4.136 240 0.892 0.8092
## RD22 - LIB -0.849 0.635 240 -1.337 0.5404
## RD22 - RVB -0.633 0.587 240 -1.080 0.7023
## STTD - LIB -4.538 4.147 240 -1.094 0.6933
## STTD - RVB -4.322 4.128 240 -1.047 0.7220
## LIB - RVB 0.216 0.600 240 0.360 0.9840
##
## Year_fct = 2018:
## contrast estimate SE df t.ratio p.value
## RD22 - STTD 4.030 4.141 240 0.973 0.7648
## RD22 - LIB 0.478 0.598 240 0.798 0.8553
## RD22 - RVB -0.601 0.480 240 -1.252 0.5942
## STTD - LIB -3.553 4.147 240 -0.857 0.8270
## STTD - RVB -4.632 4.127 240 -1.122 0.6761
## LIB - RVB -1.079 0.504 240 -2.143 0.1427
##
## Year_fct = 2019:
## contrast estimate SE df t.ratio p.value
## RD22 - STTD 4.449 4.118 240 1.080 0.7018
## RD22 - LIB -0.352 0.594 240 -0.592 0.9345
## RD22 - RVB 0.119 0.488 240 0.243 0.9949
## STTD - LIB -4.801 4.127 240 -1.163 0.6505
## STTD - RVB -4.330 4.090 240 -1.059 0.7150
## LIB - RVB 0.470 0.521 240 0.904 0.8029
##
## P value adjustment: tukey method for comparing a family of 4 estimates
# Create table of contrasts and convert it to a tibble for plot
df_gam_sta_yr <- em_gam_sta_yr %>%
cld(sort = FALSE, Letters = letters) %>%
as_tibble() %>%
mutate(
group = str_remove_all(.group, fixed(" ")),
# back transform log-transformed results
across(c(emmean, lower.CL, upper.CL), ~ exp(.x) / 1000)
) %>%
# Add min and max values of observed data to the Tukey post-hoc results and
# calculate vertical positioning of letters
left_join(
df_chla_c2_lag2 %>%
summarize(
max_val = max(Chla),
min_val = min(Chla),
.by = Year_fct
),
by = join_by(Year_fct)
) %>%
mutate(max_val = if_else(upper.CL > max_val, upper.CL, max_val)) %>%
group_by(Year_fct) %>%
mutate(max_val = max(max_val)) %>%
ungroup() %>%
mutate(y_pos = max_val + (max_val - min_val) / 10) %>%
select(
StationCode,
Year_fct,
emmean,
lower.CL,
upper.CL,
group,
y_pos
)
# Create boxplot showing Tukey post-hoc results
plt_gam_sta_yr <- df_gam_sta_yr %>%
ggplot(
aes(
x = StationCode,
y = emmean,
ymin = lower.CL,
ymax = upper.CL
)
) +
geom_boxplot(
data = df_chla_c2_lag2,
aes(x = StationCode, y = Chla),
inherit.aes = FALSE
) +
geom_crossbar(color = "grey82", fill = "grey", alpha = 0.7, linewidth = 0.1) +
geom_point(color = "red") +
geom_text(aes(y = y_pos, label = group), size = 3.5) +
facet_wrap(vars(Year_fct), scales = "free_y") +
xlab("Station") +
ylab(expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))) +
theme_bw()
plt_gam_sta_yr
None of the contrasts are significant. Also, the model under predicts RD22, and STTD has a lot of uncertainty.
# Estimated marginal means for year by station
em_gam_yr_sta <- emmeans(m_gam_sflow_lag2, ~ Year_fct | StationCode)
# Tukey post-hoc contrasts
pairs(em_gam_yr_sta)
## StationCode = RD22:
## contrast estimate SE df t.ratio p.value
## Year_fct2015 - Year_fct2016 0.4746 0.333 240 1.427 0.6108
## Year_fct2015 - Year_fct2017 0.2222 0.312 240 0.713 0.9533
## Year_fct2015 - Year_fct2018 0.1650 0.305 240 0.541 0.9829
## Year_fct2015 - Year_fct2019 -0.0565 0.303 240 -0.186 0.9997
## Year_fct2016 - Year_fct2017 -0.2524 0.193 240 -1.306 0.6875
## Year_fct2016 - Year_fct2018 -0.3096 0.186 240 -1.661 0.4604
## Year_fct2016 - Year_fct2019 -0.5311 0.188 240 -2.820 0.0412
## Year_fct2017 - Year_fct2018 -0.0572 0.142 240 -0.404 0.9944
## Year_fct2017 - Year_fct2019 -0.2787 0.144 240 -1.935 0.3017
## Year_fct2018 - Year_fct2019 -0.2215 0.134 240 -1.648 0.4685
##
## StationCode = STTD:
## contrast estimate SE df t.ratio p.value
## Year_fct2015 - Year_fct2016 -0.0493 0.345 240 -0.143 0.9999
## Year_fct2015 - Year_fct2017 -0.0111 0.332 240 -0.034 1.0000
## Year_fct2015 - Year_fct2018 0.2736 0.326 240 0.839 0.9181
## Year_fct2015 - Year_fct2019 0.4706 0.331 240 1.424 0.6129
## Year_fct2016 - Year_fct2017 0.0382 0.207 240 0.184 0.9997
## Year_fct2016 - Year_fct2018 0.3229 0.198 240 1.632 0.4786
## Year_fct2016 - Year_fct2019 0.5199 0.205 240 2.536 0.0861
## Year_fct2017 - Year_fct2018 0.2848 0.168 240 1.692 0.4411
## Year_fct2017 - Year_fct2019 0.4817 0.176 240 2.743 0.0507
## Year_fct2018 - Year_fct2019 0.1970 0.150 240 1.316 0.6813
##
## StationCode = LIB:
## contrast estimate SE df t.ratio p.value
## Year_fct2015 - Year_fct2016 -0.3561 0.585 240 -0.609 0.9737
## Year_fct2015 - Year_fct2017 -0.1351 0.529 240 -0.256 0.9991
## Year_fct2015 - Year_fct2018 1.1348 0.534 240 2.126 0.2124
## Year_fct2015 - Year_fct2019 0.0840 0.530 240 0.158 0.9999
## Year_fct2016 - Year_fct2017 0.2210 0.293 240 0.755 0.9429
## Year_fct2016 - Year_fct2018 1.4909 0.333 240 4.481 0.0001
## Year_fct2016 - Year_fct2019 0.4401 0.314 240 1.400 0.6284
## Year_fct2017 - Year_fct2018 1.2699 0.215 240 5.914 <.0001
## Year_fct2017 - Year_fct2019 0.2190 0.202 240 1.084 0.8148
## Year_fct2018 - Year_fct2019 -1.0508 0.213 240 -4.923 <.0001
##
## StationCode = RVB:
## contrast estimate SE df t.ratio p.value
## Year_fct2015 - Year_fct2016 -0.5157 0.559 240 -0.922 0.8882
## Year_fct2015 - Year_fct2017 0.1420 0.437 240 0.325 0.9976
## Year_fct2015 - Year_fct2018 0.1168 0.359 240 0.325 0.9976
## Year_fct2015 - Year_fct2019 0.6154 0.376 240 1.635 0.4763
## Year_fct2016 - Year_fct2017 0.6577 0.563 240 1.168 0.7694
## Year_fct2016 - Year_fct2018 0.6325 0.506 240 1.250 0.7220
## Year_fct2016 - Year_fct2019 1.1311 0.518 240 2.185 0.1890
## Year_fct2017 - Year_fct2018 -0.0252 0.372 240 -0.068 1.0000
## Year_fct2017 - Year_fct2019 0.4734 0.387 240 1.225 0.7370
## Year_fct2018 - Year_fct2019 0.4986 0.293 240 1.704 0.4332
##
## P value adjustment: tukey method for comparing a family of 5 estimates
# Create table of contrasts and convert it to a tibble for plot
df_gam_yr_sta <- em_gam_yr_sta %>%
cld(sort = FALSE, Letters = letters) %>%
as_tibble() %>%
mutate(
group = str_remove_all(.group, fixed(" ")),
# back transform log-transformed results
across(c(emmean, lower.CL, upper.CL), ~ exp(.x) / 1000)
) %>%
# Add min and max values of observed data to the Tukey post-hoc results and
# calculate vertical positioning of letters
left_join(
df_chla_c2_lag2 %>%
summarize(
max_val = max(Chla),
min_val = min(Chla),
.by = StationCode
),
by = join_by(StationCode)
) %>%
mutate(max_val = if_else(upper.CL > max_val, upper.CL, max_val)) %>%
group_by(StationCode) %>%
mutate(max_val = max(max_val)) %>%
ungroup() %>%
mutate(y_pos = max_val + (max_val - min_val) / 10) %>%
select(
StationCode,
Year_fct,
emmean,
lower.CL,
upper.CL,
group,
y_pos
)
# Create boxplot showing Tukey post-hoc results
plt_gam_yr_sta <- df_gam_yr_sta %>%
ggplot(
aes(
x = Year_fct,
y = emmean,
ymin = lower.CL,
ymax = upper.CL
)
) +
geom_boxplot(
data = df_chla_c2_lag2,
aes(x = Year_fct, y = Chla),
inherit.aes = FALSE
) +
geom_crossbar(color = "grey82", fill = "grey", alpha = 0.7, linewidth = 0.1) +
geom_point(color = "red") +
geom_text(aes(y = y_pos, label = group), size = 3.5) +
facet_wrap(vars(StationCode), scales = "free_y") +
xlab("Year") +
ylab(expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))) +
theme_bw()
plt_gam_yr_sta
Again, the model under predicts RD22, and both STTD and RVB have a lot of uncertainty.
After looking at the results more closely from Model 7, they appear questionable. I think we should consider using another possibly less complicated model. Model 2 (GAM 2-way interactions with s(Week)) was in close second place behind Model 7 for AIC and in close third place for BIC. Let’s revisit this model, but we’ll break it into 4 separate models for each station to make it less complicated.
ls_chla_c2_lag <- split(df_chla_c2_lag, ~ StationCode)
m_gam_flow_yr_rd22 <- gam(
Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5),
data = ls_chla_c2_lag$RD22,
method = "REML",
knots = list(week = c(0, 52))
)
Lets look at the model summary and diagnostics:
summary(m_gam_flow_yr_rd22)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.6958227 0.1132442 85.619 < 2e-16 ***
## Year_fct2016 -0.7142917 0.1660087 -4.303 5.32e-05 ***
## Year_fct2017 -0.8940651 0.2624785 -3.406 0.00109 **
## Year_fct2018 -0.4058687 0.1484528 -2.734 0.00790 **
## Year_fct2019 -0.1231646 0.1458255 -0.845 0.40118
## Flow -0.0013920 0.0005276 -2.639 0.01024 *
## Year_fct2016:Flow 0.0013735 0.0008616 1.594 0.11536
## Year_fct2017:Flow 0.0307527 0.0137880 2.230 0.02890 *
## Year_fct2018:Flow 0.0005201 0.0006813 0.763 0.44779
## Year_fct2019:Flow -0.0002592 0.0006023 -0.430 0.66821
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.333 3 8.92 8.3e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.595 Deviance explained = 65.1%
## -REML = 65.495 Scale est. = 0.11878 n = 83
appraise(m_gam_flow_yr_rd22)
shapiro.test(residuals(m_gam_flow_yr_rd22))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow_yr_rd22)
## W = 0.98163, p-value = 0.2826
k.check(m_gam_flow_yr_rd22)
## k' edf k-index p-value
## s(Week) 3 2.333212 0.9492174 0.28
draw(m_gam_flow_yr_rd22, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow_yr_rd22, pages = 1, all.terms = TRUE)
acf(residuals(m_gam_flow_yr_rd22))
Box.test(residuals(m_gam_flow_yr_rd22), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow_yr_rd22)
## X-squared = 26.689, df = 20, p-value = 0.1442
anova(m_gam_flow_yr_rd22)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5)
##
## Parametric Terms:
## df F p-value
## Year_fct 4 7.366 5.12e-05
## Flow 1 6.962 0.0102
## Year_fct:Flow 4 2.383 0.0595
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.333 3.000 8.92 8.3e-06
Shapiro-Wilk normality test shows that the residuals are normal, the diagnostic plots look really good. The ACF plot and the Box-Ljung test indicate little to no serial autocorrelation. Let’s take a closer look at how the back-transformed fitted values from the model match the observed values.
df_m_gam_flow_yr_rd22_fit <- ls_chla_c2_lag$RD22 %>%
fitted_values(m_gam_flow_yr_rd22, data = .) %>%
mutate(fitted_bt = exp(.fitted) / 1000)
plt_m_gam_flow_yr_rd22_fit <- df_m_gam_flow_yr_rd22_fit %>%
ggplot(aes(x = fitted_bt, y = Chla)) +
geom_point() +
geom_abline(slope = 1, intercept = 0, color = "red") +
theme_bw() +
labs(
x = "Back-transformed Fitted Values",
y = "Observed Values"
)
plt_m_gam_flow_yr_rd22_fit
plt_m_gam_flow_yr_rd22_fit + facet_wrap(vars(Year_fct), scales = "free")
This model looks pretty good. Note that variability does increase as the chlorophyll values increase. Before proceeding with this model for RD22, let’s look more closely at its results.
# Calculate min and max flows for each station to narrow down x-axis in the plot
df_chla_flow_yr_rd22_summ <- ls_chla_c2_lag$RD22 %>%
summarize(
Flow_min = min(Flow),
Flow_max = max(Flow),
.by = c(Year_fct)
) %>%
mutate(
Flow_buffer = (Flow_max - Flow_min) * 0.05,
Flow_min = Flow_min - Flow_buffer,
Flow_max = Flow_max + Flow_buffer
)
# Calculate effects of flow on chlorophyll for each year holding the
# non-focal variables constant - marginal effects/adjusted predictions
df_gam_flow_yr_rd22_eff <-
as.data.frame(
predict_response(
m_gam_flow_yr_rd22,
terms = c("Flow", "Year_fct"),
margin = "marginalmeans"
),
terms_to_colnames = TRUE
) %>%
as_tibble() %>%
# Narrow down range of flow values for each year
left_join(df_chla_flow_yr_rd22_summ, by = join_by(Year_fct)) %>%
filter(Flow >= Flow_min & Flow <= Flow_max) %>%
transmute(
Year_fct,
Flow,
# Back calculate model fits and confidence levels
across(c(predicted, conf.low, conf.high), ~ exp(.x) / 1000)
)
# Create effects plot
plt_gam_flow_yr_rd22_eff <- df_gam_flow_yr_rd22_eff %>%
ggplot(aes(x = Flow, y = predicted)) +
geom_point(
data = ls_chla_c2_lag$RD22,
aes(y = Chla),
alpha = 0.6
) +
geom_line(linewidth = 1) +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.25) +
facet_wrap(vars(Year_fct), scales = "free") +
theme_bw() +
labs(
x = "Flow (cfs)",
y = expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))
) +
scale_x_continuous(breaks = breaks_extended(6))
plt_gam_flow_yr_rd22_eff
# Estimated marginal means for year
em_gam_yr_rd22 <- emmeans(m_gam_flow_yr_rd22, ~ Year_fct)
# Tukey post-hoc contrasts
pairs(em_gam_yr_rd22)
## contrast estimate SE df t.ratio p.value
## Year_fct2015 - Year_fct2016 0.569 0.131 70.7 4.349 0.0004
## Year_fct2015 - Year_fct2017 -2.367 1.246 70.7 -1.901 0.3266
## Year_fct2015 - Year_fct2018 0.351 0.120 70.7 2.922 0.0364
## Year_fct2015 - Year_fct2019 0.151 0.121 70.7 1.250 0.7225
## Year_fct2016 - Year_fct2017 -2.936 1.234 70.7 -2.379 0.1332
## Year_fct2016 - Year_fct2018 -0.218 0.125 70.7 -1.740 0.4166
## Year_fct2016 - Year_fct2019 -0.418 0.126 70.7 -3.325 0.0119
## Year_fct2017 - Year_fct2018 2.718 1.242 70.7 2.188 0.1961
## Year_fct2017 - Year_fct2019 2.518 1.242 70.7 2.028 0.2637
## Year_fct2018 - Year_fct2019 -0.200 0.116 70.7 -1.729 0.4229
##
## P value adjustment: tukey method for comparing a family of 5 estimates
# Create table of contrasts and convert it to a tibble for plot
df_gam_yr_rd22 <- em_gam_yr_rd22 %>%
cld(sort = FALSE, Letters = letters) %>%
as_tibble() %>%
mutate(
group = str_remove_all(.group, fixed(" ")),
# back transform log-transformed results
across(c(emmean, lower.CL, upper.CL), ~ exp(.x) / 1000)
) %>%
# Add min and max values of observed data to the Tukey post-hoc results and
# calculate vertical positioning of letters
left_join(
ls_chla_c2_lag$RD22 %>%
summarize(
max_val = max(Chla),
min_val = min(Chla),
.by = Year_fct
),
by = join_by(Year_fct)
) %>%
mutate(
max_val = if_else(upper.CL > max_val, upper.CL, max_val),
y_pos = max_val + (max_val - min_val) / 10,
# Make all post-hoc contrast letters at same height equal to max of all
y_pos = max(y_pos)
) %>%
select(
Year_fct,
emmean,
lower.CL,
upper.CL,
group,
y_pos
)
# Create boxplot showing Tukey post-hoc results
plt_gam_yr_rd22 <- df_gam_yr_rd22 %>%
ggplot(
aes(
x = Year_fct,
y = emmean,
ymin = lower.CL,
ymax = upper.CL
)
) +
geom_boxplot(
data = ls_chla_c2_lag$RD22,
aes(x = Year_fct, y = Chla),
inherit.aes = FALSE
) +
geom_crossbar(color = "grey82", fill = "grey", alpha = 0.7, linewidth = 0.1) +
geom_point(color = "red") +
geom_text(aes(y = y_pos, label = group), size = 3.5) +
xlab("Year") +
ylab(expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))) +
theme_bw()
plt_gam_yr_rd22
The model predictions and confidence intervals look really off for
2017. Let’s look at what value emmeans
is using for Flow
and Week number when calculating these model predictions and how they
compare to the range for each year.
ref_grid(m_gam_flow_yr_rd22)
## 'emmGrid' object with variables:
## Year_fct = 2015, 2016, 2017, 2018, 2019
## Flow = 106.05
## Week = 35.747
ls_chla_c2_lag$RD22 %>%
summarize(
across(c(Flow, Week), list(min = min, max = max)),
.by = Year_fct
)
## # A tibble: 5 × 5
## Year_fct Flow_min Flow_max Week_min Week_max
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 2015 4.88 509. 30 45
## 2 2016 31.6 559. 25 38
## 3 2017 5.05 26.9 28 44
## 4 2018 5.56 522. 28 45
## 5 2019 9.52 690. 28 45
emmeans
is using 106 for Flow and 35.7 for Week when
calculating predictions and confidence intervals for this model. Week is
within the range of values for each year, but Flow is outside of the
range of values for 2017. This may explain why the results look really
off for 2017.
m_gam_flow_yr_sttd <- gam(
Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5),
data = ls_chla_c2_lag$STTD,
method = "REML",
knots = list(week = c(0, 52))
)
Lets look at the model summary and diagnostics:
summary(m_gam_flow_yr_sttd)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.6170057 0.0666832 129.223 < 2e-16 ***
## Year_fct2016 0.4636900 0.1006718 4.606 2.16e-05 ***
## Year_fct2017 0.4266768 0.1721946 2.478 0.01602 *
## Year_fct2018 -0.6626033 0.0996955 -6.646 9.57e-09 ***
## Year_fct2019 -1.0635357 0.0982515 -10.825 8.48e-16 ***
## Flow 0.0027340 0.0004493 6.085 8.57e-08 ***
## Year_fct2016:Flow -0.0014831 0.0006608 -2.245 0.02846 *
## Year_fct2017:Flow 0.0143166 0.0051790 2.764 0.00754 **
## Year_fct2018:Flow -0.0002519 0.0005772 -0.436 0.66414
## Year_fct2019:Flow -0.0013482 0.0005153 -2.616 0.01120 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 0.3421 3 0.137 0.303
##
## R-sq.(adj) = 0.847 Deviance explained = 86.7%
## -REML = 43.221 Scale est. = 0.071816 n = 71
appraise(m_gam_flow_yr_sttd)
shapiro.test(residuals(m_gam_flow_yr_sttd))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow_yr_sttd)
## W = 0.97466, p-value = 0.1605
k.check(m_gam_flow_yr_sttd)
## k' edf k-index p-value
## s(Week) 3 0.3421119 0.8134544 0.03
draw(m_gam_flow_yr_sttd, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow_yr_sttd, pages = 1, all.terms = TRUE)
acf(residuals(m_gam_flow_yr_sttd))
Box.test(residuals(m_gam_flow_yr_sttd), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow_yr_sttd)
## X-squared = 16.412, df = 20, p-value = 0.6907
anova(m_gam_flow_yr_sttd)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5)
##
## Parametric Terms:
## df F p-value
## Year_fct 4 69.283 < 2e-16
## Flow 1 37.022 8.57e-08
## Year_fct:Flow 4 5.092 0.00133
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 0.3421 3.0000 0.137 0.303
Shapiro-Wilk normality test shows that the residuals are normal, the diagnostic plots look really good. The ACF plot and the Box-Ljung test indicate no serial autocorrelation. Note that the smooth term is not significant. Let’s take a closer look at how the back-transformed fitted values from the model match the observed values.
df_m_gam_flow_yr_sttd_fit <- ls_chla_c2_lag$STTD %>%
fitted_values(m_gam_flow_yr_sttd, data = .) %>%
mutate(fitted_bt = exp(.fitted) / 1000)
plt_m_gam_flow_yr_sttd_fit <- df_m_gam_flow_yr_sttd_fit %>%
ggplot(aes(x = fitted_bt, y = Chla)) +
geom_point() +
geom_abline(slope = 1, intercept = 0, color = "red") +
theme_bw() +
labs(
x = "Back-transformed Fitted Values",
y = "Observed Values"
)
plt_m_gam_flow_yr_sttd_fit
plt_m_gam_flow_yr_sttd_fit + facet_wrap(vars(Year_fct), scales = "free")
This model looks pretty good. Note that variability does increase as the chlorophyll values increase. Before proceeding with this model for STTD, let’s look more closely at its results.
# Calculate min and max flows for each station to narrow down x-axis in the plot
df_chla_flow_yr_sttd_summ <- ls_chla_c2_lag$STTD %>%
summarize(
Flow_min = min(Flow),
Flow_max = max(Flow),
.by = c(Year_fct)
) %>%
mutate(
Flow_buffer = (Flow_max - Flow_min) * 0.05,
Flow_min = Flow_min - Flow_buffer,
Flow_max = Flow_max + Flow_buffer
)
# Calculate effects of flow on chlorophyll for each year holding the
# non-focal variables constant - marginal effects/adjusted predictions
df_gam_flow_yr_sttd_eff <-
as.data.frame(
predict_response(
m_gam_flow_yr_sttd,
terms = c("Flow", "Year_fct"),
margin = "marginalmeans"
),
terms_to_colnames = TRUE
) %>%
as_tibble() %>%
# Narrow down range of flow values for each year
left_join(df_chla_flow_yr_sttd_summ, by = join_by(Year_fct)) %>%
filter(Flow >= Flow_min & Flow <= Flow_max) %>%
transmute(
Year_fct,
Flow,
# Back calculate model fits and confidence levels
across(c(predicted, conf.low, conf.high), ~ exp(.x) / 1000)
)
# Create effects plot
plt_gam_flow_yr_sttd_eff <- df_gam_flow_yr_sttd_eff %>%
ggplot(aes(x = Flow, y = predicted)) +
geom_point(
data = ls_chla_c2_lag$STTD,
aes(y = Chla),
alpha = 0.6
) +
geom_line(linewidth = 1) +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.25) +
facet_wrap(vars(Year_fct), scales = "free") +
theme_bw() +
labs(
x = "Flow (cfs)",
y = expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))
) +
scale_x_continuous(breaks = breaks_extended(6))
plt_gam_flow_yr_sttd_eff
# Estimated marginal means for year
em_gam_yr_sttd <- emmeans(m_gam_flow_yr_sttd, ~ Year_fct)
# Tukey post-hoc contrasts
pairs(em_gam_yr_sttd)
## contrast estimate SE df t.ratio p.value
## Year_fct2015 - Year_fct2016 -0.395 0.0977 60.7 -4.041 0.0014
## Year_fct2015 - Year_fct2017 -1.091 0.3884 60.7 -2.809 0.0503
## Year_fct2015 - Year_fct2018 0.674 0.0971 60.7 6.941 <.0001
## Year_fct2015 - Year_fct2019 1.126 0.0949 60.7 11.870 <.0001
## Year_fct2016 - Year_fct2017 -0.696 0.3881 60.7 -1.794 0.3863
## Year_fct2016 - Year_fct2018 1.069 0.1018 60.7 10.498 <.0001
## Year_fct2016 - Year_fct2019 1.521 0.1000 60.7 15.217 <.0001
## Year_fct2017 - Year_fct2018 1.765 0.3891 60.7 4.537 0.0003
## Year_fct2017 - Year_fct2019 2.217 0.3889 60.7 5.701 <.0001
## Year_fct2018 - Year_fct2019 0.452 0.0995 60.7 4.541 0.0003
##
## P value adjustment: tukey method for comparing a family of 5 estimates
# Create table of contrasts and convert it to a tibble for plot
df_gam_yr_sttd <- em_gam_yr_sttd %>%
cld(sort = FALSE, Letters = letters) %>%
as_tibble() %>%
mutate(
group = str_remove_all(.group, fixed(" ")),
# back transform log-transformed results
across(c(emmean, lower.CL, upper.CL), ~ exp(.x) / 1000)
) %>%
# Add min and max values of observed data to the Tukey post-hoc results and
# calculate vertical positioning of letters
left_join(
ls_chla_c2_lag$STTD %>%
summarize(
max_val = max(Chla),
min_val = min(Chla),
.by = Year_fct
),
by = join_by(Year_fct)
) %>%
mutate(
max_val = if_else(upper.CL > max_val, upper.CL, max_val),
y_pos = max_val + (max_val - min_val) / 10,
# Make all post-hoc contrast letters at same height equal to max of all
y_pos = max(y_pos)
) %>%
select(
Year_fct,
emmean,
lower.CL,
upper.CL,
group,
y_pos
)
# Create boxplot showing Tukey post-hoc results
plt_gam_yr_sttd <- df_gam_yr_sttd %>%
ggplot(
aes(
x = Year_fct,
y = emmean,
ymin = lower.CL,
ymax = upper.CL
)
) +
geom_boxplot(
data = ls_chla_c2_lag$STTD,
aes(x = Year_fct, y = Chla),
inherit.aes = FALSE
) +
geom_crossbar(color = "grey82", fill = "grey", alpha = 0.7, linewidth = 0.1) +
geom_point(color = "red") +
geom_text(aes(y = y_pos, label = group), size = 3.5) +
xlab("Year") +
ylab(expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))) +
theme_bw()
plt_gam_yr_sttd
The model predictions and confidence intervals look better than those
for RD22, but 2017 still seems somewhat off. Let’s look at what value
emmeans
is using for Flow and Week number when calculating
these model predictions and how they compare to the range for each
year.
ref_grid(m_gam_flow_yr_sttd)
## 'emmGrid' object with variables:
## Year_fct = 2015, 2016, 2017, 2018, 2019
## Flow = 46.414
## Week = 35.394
ls_chla_c2_lag$STTD %>%
summarize(
across(c(Flow, Week), list(min = min, max = max)),
.by = Year_fct
)
## # A tibble: 5 × 5
## Year_fct Flow_min Flow_max Week_min Week_max
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 2015 -103. 358. 30 46
## 2 2016 -82.0 476. 25 38
## 3 2017 -61.9 -1.39 28 39
## 4 2018 -101. 445. 29 42
## 5 2019 -64.8 658. 30 45
emmeans
is using 46.4 for Flow and 35.4 for Week when
calculating predictions and confidence intervals for this model. Week is
within the range of values for each year, but Flow is outside of the
range of values for 2017. This may explain why the results look somewhat
off for 2017.
m_gam_flow_yr_lib <- gam(
Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5),
data = ls_chla_c2_lag$LIB,
method = "REML",
knots = list(week = c(0, 52))
)
Lets look at the model summary and diagnostics:
summary(m_gam_flow_yr_lib)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.794e+00 5.533e-01 14.087 < 2e-16 ***
## Year_fct2016 7.190e-01 1.141e+00 0.630 0.530883
## Year_fct2017 -1.842e-02 6.142e-01 -0.030 0.976175
## Year_fct2018 -2.685e+00 6.676e-01 -4.022 0.000163 ***
## Year_fct2019 -6.665e-01 6.794e-01 -0.981 0.330470
## Flow 4.752e-05 3.456e-04 0.137 0.891109
## Year_fct2016:Flow -1.057e-04 7.775e-04 -0.136 0.892309
## Year_fct2017:Flow -1.905e-05 4.570e-04 -0.042 0.966895
## Year_fct2018:Flow -9.012e-04 6.981e-04 -1.291 0.201667
## Year_fct2019:Flow 6.819e-06 6.155e-04 0.011 0.991198
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 1.84 3 3.443 0.00353 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.83 Deviance explained = 85.6%
## -REML = 78.76 Scale est. = 0.18821 n = 72
appraise(m_gam_flow_yr_lib)
shapiro.test(residuals(m_gam_flow_yr_lib))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow_yr_lib)
## W = 0.96604, p-value = 0.04888
k.check(m_gam_flow_yr_lib)
## k' edf k-index p-value
## s(Week) 3 1.839936 1.010445 0.51
draw(m_gam_flow_yr_lib, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow_yr_lib, pages = 1, all.terms = TRUE)
acf(residuals(m_gam_flow_yr_lib))
Box.test(residuals(m_gam_flow_yr_lib), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow_yr_lib)
## X-squared = 55.221, df = 20, p-value = 3.805e-05
anova(m_gam_flow_yr_lib)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5)
##
## Parametric Terms:
## df F p-value
## Year_fct 4 7.442 6.14e-05
## Flow 1 0.019 0.891
## Year_fct:Flow 4 0.462 0.763
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 1.84 3.00 3.443 0.00353
Besides the Shapiro-Wilk normality test showing that the residuals aren’t normal, the diagnostic plots look pretty good. However, the residuals are autocorrelated.
Now, we’ll try to deal with the residual autocorrelation and the non-normal residuals. We’ll run a series of linear models adding 1 and 2 lag terms and compare how well they correct for autocorrelation.
m_gam_flow_yr_lib_lag1 <- gam(
Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5) + lag1,
data = ls_chla_c2_lag$LIB,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_flow_yr_lib_lag1))
Box.test(residuals(m_gam_flow_yr_lib_lag1), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow_yr_lib_lag1)
## X-squared = 24.824, df = 20, p-value = 0.2083
m_gam_flow_yr_lib_lag2 <- gam(
Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5) + lag1 + lag2,
data = ls_chla_c2_lag$LIB,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_flow_yr_lib_lag2))
Box.test(residuals(m_gam_flow_yr_lib_lag2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow_yr_lib_lag2)
## X-squared = 18.158, df = 20, p-value = 0.577
The model with 1 lag term already seems to address the serial autocorrelation, but the lag2 model is even better. Let’s use AIC to see how they compare.
AIC(m_gam_flow_yr_lib, m_gam_flow_yr_lib_lag1, m_gam_flow_yr_lib_lag2)
## df AIC
## m_gam_flow_yr_lib 13.26481 97.66666
## m_gam_flow_yr_lib_lag1 13.46163 60.08330
## m_gam_flow_yr_lib_lag2 13.25738 57.16020
It looks like the lag2 model has the best fit according to the AIC values. Let’s take a closer look at that one.
summary(m_gam_flow_yr_lib_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5) + lag1 +
## lag2
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.591e+00 9.906e-01 2.616 0.0118 *
## Year_fct2016 1.335e+00 1.037e+00 1.287 0.2040
## Year_fct2017 1.598e-01 4.981e-01 0.321 0.7496
## Year_fct2018 -3.512e-01 6.883e-01 -0.510 0.6121
## Year_fct2019 -1.534e-01 5.348e-01 -0.287 0.7755
## Flow -1.107e-04 2.686e-04 -0.412 0.6819
## lag1 8.803e-01 1.357e-01 6.485 3.88e-08 ***
## lag2 -2.401e-01 1.529e-01 -1.570 0.1227
## Year_fct2016:Flow 7.132e-04 7.314e-04 0.975 0.3342
## Year_fct2017:Flow 1.135e-04 3.791e-04 0.299 0.7659
## Year_fct2018:Flow 7.046e-04 7.707e-04 0.914 0.3650
## Year_fct2019:Flow -5.475e-05 5.027e-04 -0.109 0.9137
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 0.1328 3 0.047 0.351
##
## R-sq.(adj) = 0.897 Deviance explained = 91.6%
## -REML = 59.479 Scale est. = 0.11933 n = 62
appraise(m_gam_flow_yr_lib_lag2)
shapiro.test(residuals(m_gam_flow_yr_lib_lag2))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow_yr_lib_lag2)
## W = 0.9032, p-value = 0.0001349
k.check(m_gam_flow_yr_lib_lag2)
## k' edf k-index p-value
## s(Week) 3 0.1328294 0.9798788 0.4175
draw(m_gam_flow_yr_lib_lag2, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow_yr_lib_lag2, pages = 1, all.terms = TRUE)
anova(m_gam_flow_yr_lib_lag2)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5) + lag1 +
## lag2
##
## Parametric Terms:
## df F p-value
## Year_fct 4 0.648 0.631
## Flow 1 0.170 0.682
## lag1 1 42.054 3.88e-08
## lag2 1 2.465 0.123
## Year_fct:Flow 4 0.454 0.769
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 0.1328 3.0000 0.047 0.351
The model diagnostics look okay - serial autocorrelation has been accounted for, but the Shapiro-Wilk normality test and diagnostic plots show that the residuals aren’t normal. Also, note that all terms besides lag1 are not significant. Let’s take a closer look at how the back-transformed fitted values from the model match the observed values.
df_chla_lib_lag2 <- ls_chla_c2_lag$LIB %>% drop_na(lag1, lag2)
df_m_gam_flow_yr_lib_lag2_fit <- df_chla_lib_lag2 %>%
fitted_values(m_gam_flow_yr_lib_lag2, data = .) %>%
mutate(fitted_bt = exp(.fitted) / 1000)
plt_m_gam_flow_yr_lib_lag2_fit <- df_m_gam_flow_yr_lib_lag2_fit %>%
ggplot(aes(x = fitted_bt, y = Chla)) +
geom_point() +
geom_abline(slope = 1, intercept = 0, color = "red") +
theme_bw() +
labs(
x = "Back-transformed Fitted Values",
y = "Observed Values"
)
plt_m_gam_flow_yr_lib_lag2_fit
plt_m_gam_flow_yr_lib_lag2_fit + facet_wrap(vars(Year_fct), scales = "free")
This model looks pretty good. Note that variability does increase as the chlorophyll values increase. Before proceeding with this model for LIB, let’s look more closely at its results.
# Calculate min and max flows for each station to narrow down x-axis in the plot
df_chla_flow_yr_lib_summ <- df_chla_lib_lag2 %>%
summarize(
Flow_min = min(Flow),
Flow_max = max(Flow),
.by = c(Year_fct)
) %>%
mutate(
Flow_buffer = (Flow_max - Flow_min) * 0.05,
Flow_min = Flow_min - Flow_buffer,
Flow_max = Flow_max + Flow_buffer
)
# Calculate effects of flow on chlorophyll for each year holding the
# non-focal variables constant - marginal effects/adjusted predictions
df_gam_flow_yr_lib_eff <-
as.data.frame(
predict_response(
m_gam_flow_yr_lib_lag2,
terms = c("Flow", "Year_fct"),
margin = "marginalmeans"
),
terms_to_colnames = TRUE
) %>%
as_tibble() %>%
# Narrow down range of flow values for each year
left_join(df_chla_flow_yr_lib_summ, by = join_by(Year_fct)) %>%
filter(Flow >= Flow_min & Flow <= Flow_max) %>%
transmute(
Year_fct,
Flow,
# Back calculate model fits and confidence levels
across(c(predicted, conf.low, conf.high), ~ exp(.x) / 1000)
)
# Create effects plot
plt_gam_flow_yr_lib_eff <- df_gam_flow_yr_lib_eff %>%
ggplot(aes(x = Flow, y = predicted)) +
geom_point(
data = df_chla_lib_lag2,
aes(y = Chla),
alpha = 0.6
) +
geom_line(linewidth = 1) +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.25) +
facet_wrap(vars(Year_fct), scales = "free") +
theme_bw() +
labs(
x = "Flow (cfs)",
y = expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))
) +
scale_x_continuous(breaks = breaks_extended(6))
plt_gam_flow_yr_lib_eff
# Estimated marginal means for year
em_gam_yr_lib <- emmeans(m_gam_flow_yr_lib_lag2, ~ Year_fct)
# Tukey post-hoc contrasts
pairs(em_gam_yr_lib)
## contrast estimate SE df t.ratio p.value
## Year_fct2015 - Year_fct2016 -0.5125 0.255 49.9 -2.007 0.2775
## Year_fct2015 - Year_fct2017 -0.0289 0.166 49.9 -0.174 0.9998
## Year_fct2015 - Year_fct2018 1.1640 0.444 49.9 2.619 0.0821
## Year_fct2015 - Year_fct2019 0.0902 0.275 49.9 0.328 0.9974
## Year_fct2016 - Year_fct2017 0.4836 0.230 49.9 2.098 0.2370
## Year_fct2016 - Year_fct2018 1.6765 0.505 49.9 3.321 0.0139
## Year_fct2016 - Year_fct2019 0.6027 0.341 49.9 1.766 0.4046
## Year_fct2017 - Year_fct2018 1.1929 0.442 49.9 2.699 0.0683
## Year_fct2017 - Year_fct2019 0.1191 0.266 49.9 0.448 0.9914
## Year_fct2018 - Year_fct2019 -1.0738 0.480 49.9 -2.238 0.1828
##
## P value adjustment: tukey method for comparing a family of 5 estimates
# Create table of contrasts and convert it to a tibble for plot
df_gam_yr_lib <- em_gam_yr_lib %>%
cld(sort = FALSE, Letters = letters) %>%
as_tibble() %>%
mutate(
group = str_remove_all(.group, fixed(" ")),
# back transform log-transformed results
across(c(emmean, lower.CL, upper.CL), ~ exp(.x) / 1000)
) %>%
# Add min and max values of observed data to the Tukey post-hoc results and
# calculate vertical positioning of letters
left_join(
df_chla_lib_lag2 %>%
summarize(
max_val = max(Chla),
min_val = min(Chla),
.by = Year_fct
),
by = join_by(Year_fct)
) %>%
mutate(
max_val = if_else(upper.CL > max_val, upper.CL, max_val),
y_pos = max_val + (max_val - min_val) / 10,
# Make all post-hoc contrast letters at same height equal to max of all
y_pos = max(y_pos)
) %>%
select(
Year_fct,
emmean,
lower.CL,
upper.CL,
group,
y_pos
)
# Create boxplot showing Tukey post-hoc results
plt_gam_yr_lib <- df_gam_yr_lib %>%
ggplot(
aes(
x = Year_fct,
y = emmean,
ymin = lower.CL,
ymax = upper.CL
)
) +
geom_boxplot(
data = df_chla_lib_lag2,
aes(x = Year_fct, y = Chla),
inherit.aes = FALSE
) +
geom_crossbar(color = "grey82", fill = "grey", alpha = 0.7, linewidth = 0.1) +
geom_point(color = "red") +
geom_text(aes(y = y_pos, label = group), size = 3.5) +
xlab("Year") +
ylab(expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))) +
theme_bw()
plt_gam_yr_lib
The model predictions and confidence intervals look decent, but 2016
seems somewhat off. Let’s look at what value emmeans
is
using for Flow and Week number when calculating these model predictions
and how they compare to the range for each year.
ref_grid(m_gam_flow_yr_lib_lag2)
## 'emmGrid' object with variables:
## Year_fct = 2015, 2016, 2017, 2018, 2019
## Flow = -1153.5
## lag1 = 7.6183
## lag2 = 7.6844
## Week = 35.968
df_chla_lib_lag2 %>%
summarize(
across(c(Flow, Week), list(min = min, max = max)),
.by = Year_fct
)
## # A tibble: 5 × 5
## Year_fct Flow_min Flow_max Week_min Week_max
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 2015 -1946. -802. 29 46
## 2 2016 -1646. -1171. 24 38
## 3 2017 -1488. -221. 30 44
## 4 2018 -767. -162 35 44
## 5 2019 -1102. -52.5 30 43
emmeans
is using -1154 for Flow and 36 for Week when
calculating predictions and confidence intervals for this model. Week is
within the range of values for each year, but Flow is outside of the
range of values for 2016, 2018, and 2019. This may explain why the
results look somewhat off for 2016 and the generally wide confidence
intervals for all years.
m_gam_flow_yr_rvb <- gam(
Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5),
data = ls_chla_c2_lag$RVB,
method = "REML",
knots = list(week = c(0, 52))
)
Lets look at the model summary and diagnostics:
summary(m_gam_flow_yr_rvb)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.058e+00 3.989e-01 17.694 <2e-16 ***
## Year_fct2016 1.917e+00 5.989e-01 3.202 0.0020 **
## Year_fct2017 6.736e-01 5.037e-01 1.337 0.1851
## Year_fct2018 3.069e-01 4.629e-01 0.663 0.5094
## Year_fct2019 -5.541e-01 4.808e-01 -1.152 0.2528
## Flow 1.411e-04 9.403e-05 1.501 0.1376
## Year_fct2016:Flow -2.880e-04 1.095e-04 -2.632 0.0103 *
## Year_fct2017:Flow -1.724e-04 9.976e-05 -1.728 0.0881 .
## Year_fct2018:Flow -1.455e-04 9.932e-05 -1.465 0.1472
## Year_fct2019:Flow -9.370e-05 1.005e-04 -0.932 0.3542
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.682 3 16.69 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.76 Deviance explained = 79.2%
## -REML = 47.018 Scale est. = 0.047662 n = 88
appraise(m_gam_flow_yr_rvb)
shapiro.test(residuals(m_gam_flow_yr_rvb))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow_yr_rvb)
## W = 0.96779, p-value = 0.02739
k.check(m_gam_flow_yr_rvb)
## k' edf k-index p-value
## s(Week) 3 2.681987 1.156251 0.9325
draw(m_gam_flow_yr_rvb, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow_yr_rvb, pages = 1, all.terms = TRUE)
acf(residuals(m_gam_flow_yr_rvb))
Box.test(residuals(m_gam_flow_yr_rvb), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow_yr_rvb)
## X-squared = 31.666, df = 20, p-value = 0.04699
anova(m_gam_flow_yr_rvb)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5)
##
## Parametric Terms:
## df F p-value
## Year_fct 4 9.736 2.11e-06
## Flow 1 2.252 0.138
## Year_fct:Flow 4 4.675 0.002
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.682 3.000 16.69 <2e-16
Besides the Shapiro-Wilk normality test showing that the residuals aren’t normal, the diagnostic plots look pretty good. However, the residuals are autocorrelated.
Now, we’ll try to deal with the residual autocorrelation and the non-normal residuals. We’ll run a series of linear models adding 1 and 2 lag terms and compare how well they correct for autocorrelation.
m_gam_flow_yr_rvb_lag1 <- gam(
Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5) + lag1,
data = ls_chla_c2_lag$RVB,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_flow_yr_rvb_lag1))
Box.test(residuals(m_gam_flow_yr_rvb_lag1), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow_yr_rvb_lag1)
## X-squared = 23.848, df = 20, p-value = 0.2491
m_gam_flow_yr_rvb_lag2 <- gam(
Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5) + lag1 + lag2,
data = ls_chla_c2_lag$RVB,
method = "REML",
knots = list(week = c(0, 52))
)
acf(residuals(m_gam_flow_yr_rvb_lag2))
Box.test(residuals(m_gam_flow_yr_rvb_lag2), lag = 20, type = 'Ljung-Box')
##
## Box-Ljung test
##
## data: residuals(m_gam_flow_yr_rvb_lag2)
## X-squared = 23.027, df = 20, p-value = 0.2875
The model with 1 lag term already seems to address the serial autocorrelation. Let’s use AIC to see how they compare.
AIC(m_gam_flow_yr_rvb, m_gam_flow_yr_rvb_lag1, m_gam_flow_yr_rvb_lag2)
## df AIC
## m_gam_flow_yr_rvb 13.93575 -3.928139
## m_gam_flow_yr_rvb_lag1 14.69086 -15.227178
## m_gam_flow_yr_rvb_lag2 15.69375 -8.788796
It looks like the lag1 model has the best fit according to the AIC values. Let’s take a closer look at that one.
summary(m_gam_flow_yr_rvb_lag1)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5) + lag1
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.808e+00 8.641e-01 4.407 3.71e-05 ***
## Year_fct2016 1.626e+00 6.187e-01 2.628 0.0105 *
## Year_fct2017 7.505e-01 5.026e-01 1.493 0.1399
## Year_fct2018 6.441e-01 4.720e-01 1.365 0.1768
## Year_fct2019 4.841e-02 4.970e-01 0.097 0.9227
## Flow 1.726e-04 9.998e-05 1.727 0.0887 .
## lag1 4.064e-01 9.548e-02 4.256 6.36e-05 ***
## Year_fct2016:Flow -2.752e-04 1.138e-04 -2.418 0.0182 *
## Year_fct2017:Flow -1.925e-04 1.040e-04 -1.851 0.0684 .
## Year_fct2018:Flow -1.865e-04 1.040e-04 -1.793 0.0774 .
## Year_fct2019:Flow -1.450e-04 1.049e-04 -1.383 0.1712
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.244 3 3.694 0.00466 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.783 Deviance explained = 81.5%
## -REML = 40.814 Scale est. = 0.040701 n = 83
appraise(m_gam_flow_yr_rvb_lag1)
shapiro.test(residuals(m_gam_flow_yr_rvb_lag1))
##
## Shapiro-Wilk normality test
##
## data: residuals(m_gam_flow_yr_rvb_lag1)
## W = 0.91616, p-value = 4.636e-05
k.check(m_gam_flow_yr_rvb_lag1)
## k' edf k-index p-value
## s(Week) 3 2.243627 1.169088 0.935
draw(m_gam_flow_yr_rvb_lag1, select = 1, residuals = TRUE, rug = FALSE)
plot(m_gam_flow_yr_rvb_lag1, pages = 1, all.terms = TRUE)
anova(m_gam_flow_yr_rvb_lag1)
##
## Family: gaussian
## Link function: identity
##
## Formula:
## Chla_log ~ Year_fct * Flow + s(Week, bs = "cc", k = 5) + lag1
##
## Parametric Terms:
## df F p-value
## Year_fct 4 3.522 0.0112
## Flow 1 2.981 0.0887
## lag1 1 18.118 6.36e-05
## Year_fct:Flow 4 2.442 0.0547
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(Week) 2.244 3.000 3.694 0.00466
The model diagnostics look okay - serial autocorrelation has been accounted for, but the Shapiro-Wilk normality test and diagnostic plots show that the residuals aren’t normal. Let’s take a closer look at how the back-transformed fitted values from the model match the observed values.
df_chla_rvb_lag1 <- ls_chla_c2_lag$RVB %>% drop_na(lag1)
df_m_gam_flow_yr_rvb_lag1_fit <- df_chla_rvb_lag1 %>%
fitted_values(m_gam_flow_yr_rvb_lag1, data = .) %>%
mutate(fitted_bt = exp(.fitted) / 1000)
plt_m_gam_flow_yr_rvb_lag1_fit <- df_m_gam_flow_yr_rvb_lag1_fit %>%
ggplot(aes(x = fitted_bt, y = Chla)) +
geom_point() +
geom_abline(slope = 1, intercept = 0, color = "red") +
theme_bw() +
labs(
x = "Back-transformed Fitted Values",
y = "Observed Values"
)
plt_m_gam_flow_yr_rvb_lag1_fit
plt_m_gam_flow_yr_rvb_lag1_fit + facet_wrap(vars(Year_fct), scales = "free")
This model looks pretty good. Before proceeding with this model for RVB, let’s look more closely at its results.
# Calculate min and max flows for each station to narrow down x-axis in the plot
df_chla_flow_yr_rvb_summ <- df_chla_rvb_lag1 %>%
summarize(
Flow_min = min(Flow),
Flow_max = max(Flow),
.by = c(Year_fct)
) %>%
mutate(
Flow_buffer = (Flow_max - Flow_min) * 0.05,
Flow_min = Flow_min - Flow_buffer,
Flow_max = Flow_max + Flow_buffer
)
# Calculate effects of flow on chlorophyll for each year holding the
# non-focal variables constant - marginal effects/adjusted predictions
df_gam_flow_yr_rvb_eff <-
as.data.frame(
predict_response(
m_gam_flow_yr_rvb_lag1,
terms = c("Flow", "Year_fct"),
margin = "marginalmeans"
),
terms_to_colnames = TRUE
) %>%
as_tibble() %>%
# Narrow down range of flow values for each year
left_join(df_chla_flow_yr_rvb_summ, by = join_by(Year_fct)) %>%
filter(Flow >= Flow_min & Flow <= Flow_max) %>%
transmute(
Year_fct,
Flow,
# Back calculate model fits and confidence levels
across(c(predicted, conf.low, conf.high), ~ exp(.x) / 1000)
)
# Create effects plot
plt_gam_flow_yr_rvb_eff <- df_gam_flow_yr_rvb_eff %>%
ggplot(aes(x = Flow, y = predicted)) +
geom_point(
data = df_chla_rvb_lag1,
aes(y = Chla),
alpha = 0.6
) +
geom_line(linewidth = 1) +
geom_ribbon(aes(ymin = conf.low, ymax = conf.high), alpha = 0.25) +
facet_wrap(vars(Year_fct), scales = "free") +
theme_bw() +
labs(
x = "Flow (cfs)",
y = expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))
) +
scale_x_continuous(breaks = breaks_extended(6))
plt_gam_flow_yr_rvb_eff
# Estimated marginal means for year
em_gam_yr_rvb <- emmeans(m_gam_flow_yr_rvb_lag1, ~ Year_fct)
# Tukey post-hoc contrasts
pairs(em_gam_yr_rvb)
## contrast estimate SE df t.ratio p.value
## Year_fct2015 - Year_fct2016 0.4983 0.3637 69.8 1.370 0.6486
## Year_fct2015 - Year_fct2017 0.7354 0.3670 69.8 2.004 0.2750
## Year_fct2015 - Year_fct2018 0.7951 0.3634 69.8 2.188 0.1964
## Year_fct2015 - Year_fct2019 1.0711 0.3662 69.8 2.925 0.0363
## Year_fct2016 - Year_fct2017 0.2372 0.1126 69.8 2.105 0.2295
## Year_fct2016 - Year_fct2018 0.2969 0.1011 69.8 2.936 0.0353
## Year_fct2016 - Year_fct2019 0.5729 0.1269 69.8 4.514 0.0002
## Year_fct2017 - Year_fct2018 0.0597 0.1006 69.8 0.594 0.9756
## Year_fct2017 - Year_fct2019 0.3357 0.1134 69.8 2.961 0.0330
## Year_fct2018 - Year_fct2019 0.2760 0.0825 69.8 3.347 0.0112
##
## P value adjustment: tukey method for comparing a family of 5 estimates
# Create table of contrasts and convert it to a tibble for plot
df_gam_yr_rvb <- em_gam_yr_rvb %>%
cld(sort = FALSE, Letters = letters) %>%
as_tibble() %>%
mutate(
group = str_remove_all(.group, fixed(" ")),
# back transform log-transformed results
across(c(emmean, lower.CL, upper.CL), ~ exp(.x) / 1000)
) %>%
# Add min and max values of observed data to the Tukey post-hoc results and
# calculate vertical positioning of letters
left_join(
df_chla_rvb_lag1 %>%
summarize(
max_val = max(Chla),
min_val = min(Chla),
.by = Year_fct
),
by = join_by(Year_fct)
) %>%
mutate(
max_val = if_else(upper.CL > max_val, upper.CL, max_val),
y_pos = max_val + (max_val - min_val) / 10,
# Make all post-hoc contrast letters at same height equal to max of all
y_pos = max(y_pos)
) %>%
select(
Year_fct,
emmean,
lower.CL,
upper.CL,
group,
y_pos
)
# Create boxplot showing Tukey post-hoc results
plt_gam_yr_rvb <- df_gam_yr_rvb %>%
ggplot(
aes(
x = Year_fct,
y = emmean,
ymin = lower.CL,
ymax = upper.CL
)
) +
geom_boxplot(
data = df_chla_rvb_lag1,
aes(x = Year_fct, y = Chla),
inherit.aes = FALSE
) +
geom_crossbar(color = "grey82", fill = "grey", alpha = 0.7, linewidth = 0.1) +
geom_point(color = "red") +
geom_text(aes(y = y_pos, label = group), size = 3.5) +
xlab("Year") +
ylab(expression(Chlorophyll~Fluoresence~(mu*g~L^{-1}))) +
theme_bw()
plt_gam_yr_rvb
The model predictions and confidence intervals look decent, but 2015
seems somewhat off. Let’s look at what value emmeans
is
using for Flow and Week number when calculating these model predictions
and how they compare to the range for each year.
ref_grid(m_gam_flow_yr_rvb_lag1)
## 'emmGrid' object with variables:
## Year_fct = 2015, 2016, 2017, 2018, 2019
## Flow = 7719.3
## lag1 = 7.4032
## Week = 35.771
df_chla_rvb_lag1 %>%
summarize(
across(c(Flow, Week), list(min = min, max = max)),
.by = Year_fct
)
## # A tibble: 5 × 5
## Year_fct Flow_min Flow_max Week_min Week_max
## <fct> <dbl> <dbl> <dbl> <dbl>
## 1 2015 3307. 5171. 28 46
## 2 2016 6827. 10622. 23 38
## 3 2017 7095. 14402. 29 44
## 4 2018 2975. 9887. 29 45
## 5 2019 4431. 10978. 29 45
emmeans
is using 7719 for Flow and 35.8 for Week when
calculating predictions and confidence intervals for this model. Week is
within the range of values for each year, but Flow is outside of the
range of values for 2015. This may explain why the results look somewhat
off for 2015.
Model 2 broken up by station seems to be a good way to look at how flow affects chlorophyll for each year; however, the models for LIB and RVB had trouble with normality of their residuals and needed adjustment for serial autocorrelation. Chlorophyll values at STTD in particular show a strong positive response to flow for all years.
In contrast, model 2 broken up by station does not appear to a
sufficient way to look at year contrasts. In most cases, the model
predictions did not match the observed data well and there were wide
confidence intervals. This may be because emmeans
used
values for Flow that were outside of the range of values for some of the
years when calculating predictions and confidence intervals.