Create some plots to explore the 2017-2020 pesticide use data for the Sacramento River and Yolo Bypass regions.
# Load packages
library(tidyverse)
library(scales)
library(here)
df_pest_use <- readRDS(here("manuscript_contam/data/processed/pesticide_use_daily_tot_2017-2020.rds"))
df_pest_use_c <- df_pest_use %>%
mutate(
PesticideClass = factor(PesticideClass, levels = c("Rice", "Pyrethroid", "Other")),
DOY = yday(Date),
)
df_pest_use_c %>%
ggplot(aes(x = DOY, y = TotalApplication, fill = PesticideClass)) +
geom_col() +
facet_grid(rows = vars(Year), cols = vars(Region)) +
scale_fill_viridis_d(
name = "Pesticide Class",
option = "plasma",
end = 0.8
) +
scale_y_continuous(
name = "Total Application (lbs)",
labels = label_comma()
) +
theme_bw() +
theme(legend.position = "top")
df_pest_use_c %>%
summarize(
TotalApplication = sum(TotalApplication),
.by = c(Region, Month, Year, PesticideClass)
) %>%
ggplot(aes(x = Month, y = TotalApplication, fill = PesticideClass)) +
geom_col() +
facet_grid(rows = vars(Year), cols = vars(Region)) +
scale_fill_viridis_d(
name = "Pesticide Class",
option = "plasma",
end = 0.8
) +
scale_y_continuous(
name = "Total Application (lbs)",
labels = label_comma()
) +
theme_bw() +
theme(legend.position = "top")